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III. Bohr’s atomic model.
II1.1' What is Bohr’s Model of an Atom?

The Bohr model of the atom was proposed by Neil Bohr in 1915. It came into existence with
the modification of Rutherford’s model of an atom. Rutherford’s model introduced the
nuclear model of an atom, in which he explained that a nucleus (positively charged) is

surrounded by negatively charged electrons.

IIT.2 Introduction to the Bohr Model

Bohr theory modified the atomic structure model by explaining that electrons move in fixed
orbitals (shells) and not anywhere in between and he also explained that each orbit (shell) has
a fixed energy. Rutherford explained the nucleus of an atom and Bohr modified that model

into electrons and their energy levels.
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Bohr’s model consists of a small nucleus (positively charged) surrounded by negative
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Bohr’s Model of an Atom

electrons moving around the nucleus in orbits. Bohr found that an electron located away from
the nucleus has more energy, and the electron which is closer to nucleus has less energy

I11.3 Planetary Model of the Atom

Quantum mechanics emerged in the mid-1920s. Neil Bohr, one of the founders of quantum
mechanics, was interested in the much-debated topic of the time — the structure of the atom.
Numerous atomic models, including the theory postulated by J.J Thompson and the discovery
of the nucleus by Ernest Rutherford, had emerged. But Bohr supported the planetary model,
which asserted that electrons revolved around a positively charged nucleus just like the

planets around the sun.




Historically, Bohr’s model of the hydrogen atom is the very first model of atomic structure
that correctly explained the radiation spectra of atomic hydrogen. The model has a special
place in the history of physics because it introduced an early quantum theory, which brought
about new developments in scientific thought and later culminated in the development of
quantum mechanics. To understand the specifics of Bohr’s model, we must first review the
nineteenth-century discoveries that prompted its formulation.

When we use a prism to analyze white light coming from the sun, several dark lines in the
solar spectrum are observed (Figure 3.1). Solar absorption lines are called Fraunhofer lines
after Joseph von Fraunhofer, who accurately measured their wavelengths. During 1854-1861,
Gustav Kirchhoff and Robert Bunsen discovered that for the various chemical elements, the
line emission spectrum of an element exactly matches its line absorption spectrum. The
difference between the absorption spectrum and the emission spectrum is explained in
Figure 3.2. An absorption spectrum is observed when light passes through a gas. This
spectrum appears as black lines that occur only at certain wavelengths on the background of
the continuous spectrum of white light (Figure 3.1). The missing wavelengths tell us which
wavelengths of the radiation are absorbed by the gas. The emission spectrum is observed
when light is emitted by a gas. This spectrum is seen as colorful lines on the black
background (see Figure 3.3 and Figure 3.4). Positions of the emission lines tell us which
wavelengths of the radiation are emitted by the gas. Each chemical element has its own
characteristic emission spectrum. For each element, the positions of its emission lines are
exactly the same as the positions of its absorption lines. This means that atoms of a specific
element absorb radiation only at specific wavelengths and radiation that does not have these
wavelengths is not absorbed by the element at all. This also means that the radiation emitted

by atoms of each element has exactly the same wavelengths as the radiation they absorb.
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Figure 3.1 In the solar emission spectrum in the visible range from 380 nm to 710 nm,
Fraunhofer lines are observed as vertical black lines at specific spectral positions in the

continuous spectrum. Highly sensitive modern instruments observe thousands of such lines.
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Figure 3.2 Observation of line spectra: (a) setup to observe absorption lines; (b) setup to
observe emission lines. (a) White light passes through a cold gas that is contained in a glass
flask. A prism is used to separate wavelengths of the passed light. In the spectrum of the
passed light, some wavelengths are missing, which are seen as black absorption lines in the
continuous spectrum on the viewing screen. (b) A gas is contained in a glass discharge tube
that has electrodes at its ends. At a high potential difference between the electrodes, the gas
glows and the light emitted from the gas passes through the prism that separates its
wavelengths. In the spectrum of the emitted light, only specific wavelengths are present,

which are seen as colorful emission lines on the screen.

Figure 3.3 The emission spectrum of atomic hydrogen: The spectral positions of emission

lines are characteristic for hydrogen atoms. (credit: “Merikanto”/Wikimedia Commons)

Figure 3.4 The emission spectrum of atomic iron: The spectral positions of emission lines are

characteristic for iron atoms.
By observing the spectra from starlight and applying additional knowledge and calculations,

astronomers can determine the makeup of objects millions of light-years away. In the 1920s,



Cecilia Payne-Gaposchkin undertook a thorough analysis of a collection of stellar spectra that
had been organized by astronomer Annie Jump Cannon. Up until that point, many researchers
believed that stars — particularly the sun — were made up of similar elements to Earth, based
in part on the spectral analysis. But Payne-Gaposchkin knew that Indian physicist Meghnad
Saha had developed a method to calculate stellar ionization to obtain an accurate measure of
star temperatures. After applying the Saha equation to the data at hand, Payne-Gaposchkin
published a monumental paper demonstrating that stars were mostly made of hydrogen and
helium, and that hydrogen was the most abundant element in the universe. Initially rejected,
her work was soon proven to be true.

Emission spectra of the elements have complex structures; they become even more complex
for elements with higher atomic numbers. The simplest spectrum, shown in Figure 3.3,
belongs to the hydrogen atom. Only four lines are visible to the human eye. As you read from
right to left in Figure 3.3, these lines are: red (656 nm), called the H- a line; aqua (486 nm),
blue (434 nm), and violet (410 nm). The lines with wavelengths shorter than 400 nm appear in
the ultraviolet part of the spectrum (Figure 3.3, far left) and are invisible to the human eye.
There are infinitely many invisible spectral lines in the series for hydrogen.

An empirical formula to describe the positions (wavelengths) A of the hydrogen emission lines

in this series was discovered in 1885 by Johann Balmer. It is known as the Balmer formula:

1 1 1

The constant RH=1.09737x10'm™" is called the Rydberg constant for hydrogen. In
Equation 6.31, the positive integer n takes on values n=3,4,5,6 for the four visible lines in this
series. The series of emission lines given by the Balmer formula is called the Balmer series
for hydrogen. Other emission lines of hydrogen that were discovered in the twentieth century

are described by the Rydberg formula, which summarizes all of the experimental data:

A n?r nf

1 1 1
—:RH(———),Whereni:nf+l,nf+2,nf+3,... (©)

When nf=1, the series of spectral lines is called the Lyman series. When nf=2, the series is
called the Balmer series, and in this case, the Rydberg formula coincides with the Balmer
formula. When nf=3, the series is called the Paschen series. When nf=4, the series is called
the Brackett series. When nf=5, the series is called the Pfund series. As you may guess,
there are infinitely many such spectral bands in the spectrum of hydrogen because nf can be

any positive integer number.



The Rydberg formula for hydrogen gives the exact positions of the spectral lines as they are
observed in a laboratory; however, at the beginning of the twentieth century, nobody could
explain why it worked so well. The Rydberg formula remained unexplained until the first

successful model of the hydrogen atom was proposed in 1913.
EXAMPLE

Limits of the Balmer Series

Calculate the longest and the shortest wavelengths in the Balmer series.
Strategy

We can use either the Balmer formula or the Rydberg formula. The longest wavelength is
obtained when 1/ni is largest, which is when ni=nf+1=3, because nf=2 for the Balmer series.

The smallest wavelength is obtained when 1/ni is smallest, which is 1/ni—0 when ni—co.
Solution

The long-wave limit:

1 1 L1 /71 1
_ _ — (1. —(=_= A = 656.
RH( 32) (1.09737 x 10)]]1(4 g):> 656.3 nm

1
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The short-wave limit;

1 1 1 /1
_— = _— = - — o )l: .
X RH(22 U) (1.09737 = 10 }m(él) = 364.6 nm

II1.4 Postulates of Bohr's Model of an Atom
Bohr proposed the following three postulates of Bohr’s model:

1- The negative electron moves around the positive nucleus (proton) in a circular orbit.
All electron orbits are centered at the nucleus. Not all classically possible orbits are
available to an electron bound to the nucleus.

2- The allowed electron orbits satisfy the first quantization condition: In the nth orbit, the

angular momentum Ln of the electron can take only discrete values:

L, =nfi, wheren =1,2,3,... (1)

This postulate says that the electron’s angular momentum is quantized. Denoted by rn and v,
respectively, the radius of the nth orbit and the electron’s speed in it, the first quantization
condition can be expressed explicitly as

MU, T, = NhA. (2)



3- An electron is allowed to make transitions from one orbit where its energy is En to
another orbit where its energy is Em. When an atom absorbs a photon, the electron
makes a transition to a higher-energy orbit. When an atom emits a photon, the electron
transits to a lower-energy orbit. Electron transitions with the simultaneous photon
absorption or photon emission take place instantaneously. The allowed electron

transitions satisfy the second quantization condition:

where hf is the energy of either an emitted or an absorbed photon with frequency f. The
second quantization condition states that an electron’s change in energy in the hydrogen atom
IS quantized.

These three postulates of the early quantum theory of the hydrogen atom allow us to derive
not only the Rydberg formula, but also the value of the Rydberg constant and other important
properties of the hydrogen atom such as its energy levels, its ionization energy, and the sizes
of electron orbits. Note that in Bohr’s model, along with two nonclassical quantization
postulates, we also have the classical description of the electron as a particle that is subjected
to the Coulomb force, and its motion must obey Newton’s laws of motion. The hydrogen
atom, as an isolated system, must obey the laws of conservation of energy and momentum in
the way we know from classical physics. Having this theoretical framework in mind, we are

ready to proceed with our analysis.

II1.5Flectron Orbits

To obtain the size rn of the electron’s nth orbit and the electron’s speed vn in it, we turn to
Newtonian mechanics. As a charged particle, the electron experiences an electrostatic pull
toward the positively charged nucleus in the center of its circular orbit. This electrostatic pull
is the centripetal force that causes the electron to move in a circle around the nucleus.
Therefore, the magnitude of centripetal force is identified with the magnitude of the

electrostatic force:

mgv% 1 e?

—5- (4)

Tn - 4’!i'€{| Tn

Here, e denotes the value of the elementary charge. The negative electron and positive proton

have the same value of charge,

lal=e.



When Equation 4 is combined with the first quantization condition given by Equation 2, we

can solve for the speed, vn, and for the radius, rn:

1 e*1
S 5)
v dweg B n
2
T, — dmwep 5 n2. (6)
mee

Note that these results tell us that the electron’s speed as well as the radius of its orbit depend
only on the index n that enumerates the orbit because all other quantities in the preceding
equations are fundamental constants. We see from Equation 6.38 that the size of the orbit
grows as the square of n. This means that the second orbit is four times as large as the first
orbit, and the third orbit is nine times as large as the first orbit, and so on. We also see from
Equation 5 that the electron’s speed in the orbit decreases as the orbit size increases. The
electron’s speed is largest in the first Bohr orbit, for n=1, which is the orbit closest to the
nucleus. The radius of the first Bohr orbit is called the Bohr radius of hydrogen, denoted as ao.

Its value is obtained by setting n=1 in Equation 6:

ﬁ? ] 7
5 =5.29 x 107" m = 0.529 A. ()

ap = 4’3r£.‘|}
Mmee

We can substitute ap in Equation 6.38 to express the radius of the nth orbit in terms of ao:
Tn = agn-. (8)

This result means that the electron orbits in hydrogen atom are quantized because the orbital

radius takes on only specific values of ap,4a0,9a0,16a0... given by Equation 8, and no other

values are allowed.

I11.6 Electron Energies
The total energy En of an electron in the nth orbit is the sum of its kinetic energy Kn and its

electrostatic potential energy Un. Utilizing Equation 5, we find that

1 1 m.e? 1 9)
K, = —m.v2 = N
2 32722 h?  n?

Recall that the electrostatic potential energy of interaction between two charges g: and g3 that
are separated by a distance ri2 is (1/4meo) Q102/r12. Here, qi=+e is the charge of the nucleus in
the hydrogen atom (the charge of the proton), g.=—¢ is the charge of the electron and ri2=rn is
the radius of the nth orbit. Now we use Equation 6 to find the potential energy of the
electron:

(10)

U — 1 e 1 mee* 1
" 4mep rn  16w2e2 A2 n?’




The total energy of the electron is the sum of Equation 9 and Equation 10:

1 m.e* 1 (12)

E,=K,+U,=— —-
* 32722 K2 n?

Note that the energy depends only on the index n because the remaining symbols in Equation

11 are physical constants. The value of the constant factor in Equation 11 is

1 et 1 et
Me€ - Me® 517 x 1078J = 13.6eV.

- TeC (12)
32n2e2  hK2 8¢ h?

Eo

It is convenient to express the electron’s energy in the nth orbit in terms of this energy, as
B, = —Eo—. (13)
n

Now we can see that the electron energies in the hydrogen atom are quantized because they
can have only discrete values of —Eo, —Eo/4, —E¢/9, —Eo/16...given by Equation 13, and no
other energy values are allowed. This set of allowed electron energies is called the energy
spectrum of hydrogen (Figure 3.5). The index n that enumerates energy levels in Bohr’s
model is called the energy quantum number. We identify the energy of the electron inside
the hydrogen atom with the energy of the hydrogen atom. Note that the smallest value of
energy is obtained for n=1, so the hydrogen atom cannot have energy smaller than that. This
smallest value of the electron energy in the hydrogen atom is called the ground state energy

of the hydrogen atom and its value is

E,— FEy— —13.6eV. (14)

The hydrogen atom may have other energies that are higher than the ground state. These
higher energy states are known as excited energy states of a hydrogen atom.

There is only one ground state, but there are infinitely many excited states because there are
infinitely many values of n in Equation 13. We say that the electron is in the “first exited
state” when its energy is E2 (when n=2), the second excited state when its energy is Es (when
n=3) and, in general, in the nth exited state when its energy is En+1. There is no highest-of-all
excited state; however, there is a limit to the sequence of excited states. If we keep increasing
n in Equation 13, we find that the limit is —n]j_)néuEﬂ{n“ =0

In this limit, the electron is no longer bound to the nucleus but becomes a free electron. An
electron remains bound in the hydrogen atom as long as its energy is negative. An electron
that orbits the nucleus in the first Bohr orbit, closest to the nucleus, is in the ground state,
where its energy has the smallest value. In the ground state, the electron is most strongly

bound to the nucleus and its energy is given by Equation 14. If we want to remove this



electron from the atom, we must supply it with enough energy, E., to at least balance out its

ground state energy E:1:

Ew+Ei=0=Ey=E = (—Ey) =Ey=136¢V. (15)

The energy that is needed to remove the electron from the atom is called the ionization
energy. The ionization energy E.. that is needed to remove the electron from the first Bohr
orbit is called the ionization limit of the hydrogen atom. The ionization limit in Equation 15

that we obtain in Bohr’s model agrees with experimental value.
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Figure 3.5 The energy spectrum of the hydrogen atom. Energy levels (horizontal lines)
represent the bound states of an electron in the atom. There is only one ground state, n=1, and
infinite quantized excited states. The states are enumerated by the quantum number n=1,2,3,
4..Vertical lines illustrate the allowed electron transitions between the states. Downward
arrows illustrate transitions with an emission of a photon with a wavelength in the indicated

spectral band.

I11.7 Spectral Emission Lines of Hydrogen
To obtain the wavelengths of the emitted radiation when an electron makes a transition from

the nth orbit to the mth orbit, we use the second of Bohr’s quantization conditions and

10



Equation 13 for energies. The emission of energy from the atom can occur only when an
electron makes a transition from an excited state to a lower-energy state. In the course of such
a transition, the emitted photon carries away the difference of energies between the states
involved in the transition. The transition cannot go in the other direction because the energy of
a photon cannot be negative, which means that for emission we must have En>Em and n>m.

Therefore, the third of Bohr’s postulates gives

h.f:

1 1 11
En—Em|=En—Em=—ED—2+E0—2=EO(_2__2), (16)
n m m n

Now we express the photon’s energy in terms of its wavelength, hf=hc/A, and divide both

sides of Equation 16 by hc. The result is
1_FEogr 1 1 (17)
A he \ m?2 n? J -

The value of the constant in this equation is

Fo _ 136V _ 1.007 x 107~ 18
he (4136 x 10715V -5)(2.997 x 10°m/s) m

This value is exactly the Rydberg constant Ry in the Rydberg heuristic formula Equation 0. In
fact, Equation 17 is identical to the Rydberg formula, because for a given m, we have n=m+1,
m+2.... In this way, the Bohr quantum model of the hydrogen atom allows us to derive the
experimental Rydberg constant from first principles and to express it in terms of fundamental
constants. Transitions between the allowed electron orbits are illustrated in Figure 3.5.

We can repeat the same steps that led to Equation 17 to obtain the wavelength of the absorbed
radiation; this again gives Equation 17 but this time for the positions of absorption lines in the
absorption spectrum of hydrogen. The only difference is that for absorption, the quantum
number m is the index of the orbit occupied by the electron before the transition (lower-
energy orbit) and the quantum number n is the index of the orbit to which the electron makes
the transition (higher-energy orbit). The difference between the electron energies in these two
orbits is the energy of the absorbed photon.

Bohr’s model of the hydrogen atom also correctly predicts the spectra of some hydrogen-like
ions. Hydrogen-like ions are atoms of elements with an atomic number Z larger than one (
Z=1 for hydrogen) but with all electrons removed except one. For example, an electrically
neutral helium atom has an atomic number Z=2. This means it has two electrons orbiting the
nucleus with a charge of g=+Ze. When one of the orbiting electrons is removed from the
helium atom (we say, when the helium atom is singly ionized), what remains is a hydrogen-

like atomic structure where the remaining electron orbits the nucleus with a charge of q=+Ze.
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This type of situation is described by the Bohr model. Assuming that the charge of the nucleus
IS not +e but +Ze, we can repeat all steps, beginning with Equation 6.36, to obtain the results

for a hydrogen-like ion:

Tﬂ:

L0 o
— T
=

where ap is the Bohr orbit of hydrogen, and
E, = _Zﬂf_a[,,l2
T

where Eo is the ionization limit of a hydrogen atom. These equations are good approximations
as long as the atomic number Z is not too large.

The Bohr model is important because it was the first model to postulate the quantization of
electron orbits in atoms. Thus, it represents an early quantum theory that gave a start to
developing modern quantum theory. It introduced the concept of a quantum number to
describe atomic states. The limitation of the early quantum theory is that it cannot describe
atoms in which the number of electrons orbiting the nucleus is larger than one. The Bohr
model of hydrogen is a semi-classical model because it combines the classical concept of
electron orbits with the new concept of quantization. The remarkable success of this model
prompted many physicists to seek an explanation for why such a model should work at all,
and to seek an understanding of the physics behind the postulates of early quantum theory.
This search brought about the onset of an entirely new concept of “matter waves.”

In an atom, electrons (negatively charged) revolve around the positively charged nucleus in a

definite circular path called orbits or shells.
II1.8 Limitations of Bohr’s Model of an Atom

The Bohr Model was an important step in the development of atomic theory. However, it has
several limitations.

- Itis in violation of the Heisenberg Uncertainty Principle. The Bohr Model considers
electrons to have both a known radius and orbit, which is impossible according to
Heisenberg.

- The Bohr Model is very limited in terms of size. Poor spectral predictions are obtained
when larger atoms are in question.

- It cannot predict the relative intensities of spectral lines.

- It does not explain the Zeeman Effect, when the spectral line is split into several

components in the presence of a magnetic field.

12



- The Bohr Model does not account for the fact that accelerating electrons do not emit

electromagnetic radiation.
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