Deep learning

Dr. Aissa Boulmerka a.boulmerka@centre-univ-mila.dz

2023-2024

CHAPTER 9 NLP AND WORD EMBEDDINGS

Word representation

 $V = [a, aaron, ..., zulu, \langle UNK \rangle]$ |V| = 10000

1-hot representation

*0*5391

*0*₉₈₅₃

King Queen Apple Orange Man Woman (4914) (7157) (456)(6257)(5391)(9853)-0 . 0 -0 -0 г0-0-0 0 0 0 0 : 0 0 1 0 0 0 0 0 0 0 : 0 0 0 1 0 : 0 0 1 0 0 0 _0」 _0_ _0_ _0_ Ω

*0*₇₁₅₇

 0_{456}

*0*₆₂₅₇

*0*₄₉₁₄

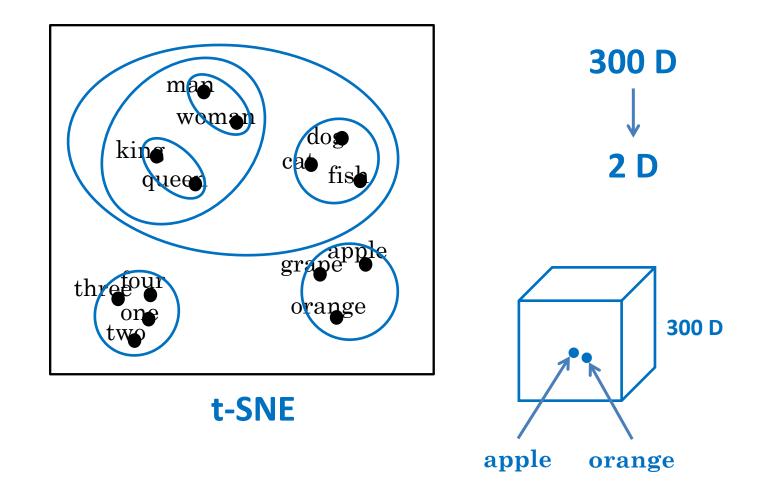
I want a glass of orange <u>juice</u>.

I want a glass of apple___?__.

Featurized representation: word embedding

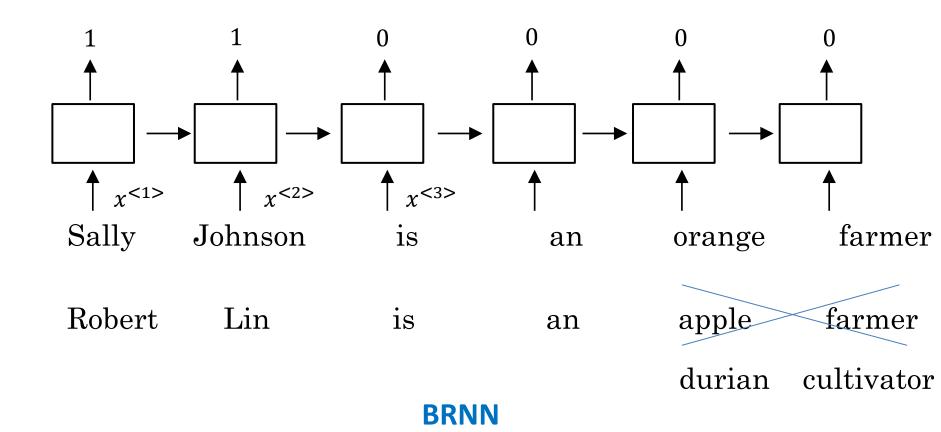
		Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
30	Gender	-1	1	-0.95	0.97	0.00	0.01
	Royal	0.01	0.02	0.93	0.95	-0.01	0.00
	0 Age	0.03	0.02	0.7	0.69	0.03	-0.02
	Food	0.09	0.01	0.02	0.01	0.95	0.97
	: Size	I want a glass of orange <u>juice</u> .					
	Cost		I want a glass of apple <u>juice</u> .				

Visualizing word embeddings



[van der Maaten and Hinton., 2008. Visualizing data using t-SNE]

Named entity recognition example

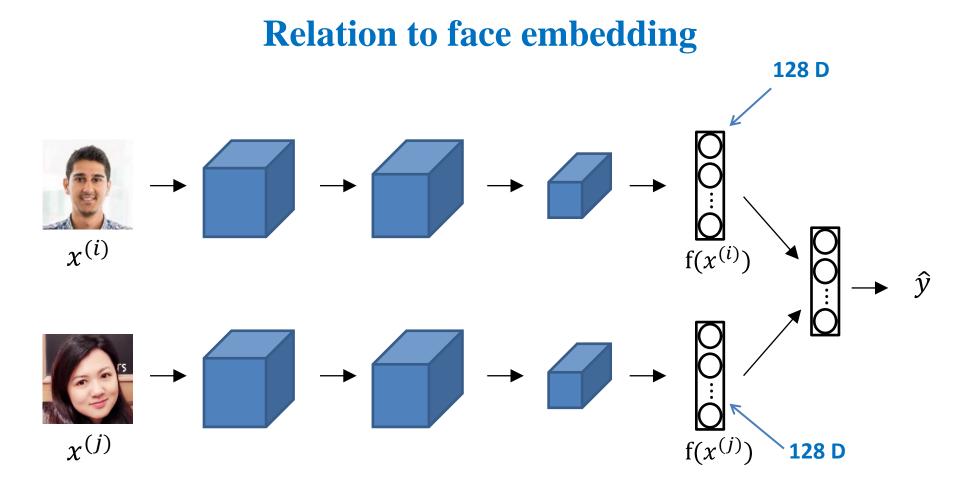


Transfer learning and word embeddings

1. Learn word embeddings from large text corpus. (1-100B words)

(Or download pre-trained embedding online.)

- Transfer embedding to new task with smaller training set. (say, 100k words)
- 3. Optional: Continue to finetune the word embeddings with new data.



[Taigman et. al., 2014. DeepFace: Closing the gap to human level performance]

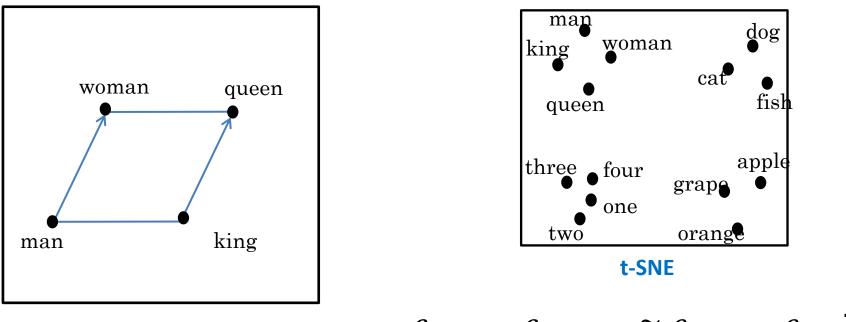
Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97
$e_{man} - e_{woman} \approx \begin{bmatrix} -2\\0\\0\\0\end{bmatrix} \qquad e_{king} - e_{qeen} \approx \begin{bmatrix} -2\\0\\0\\0\end{bmatrix}$						
$\rho - \rho \simeq \rho_1, - \rho$						

$$e_{man} - e_{woman} \approx e_{king} - e_{qeen}$$

[Mikolov et. al., 2013, Linguistic regularities in continuous space word representations]

Analogies using word vectors



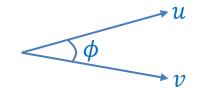
$$e_{man} - e_{woman} \approx e_{king} - e_w$$
 ?

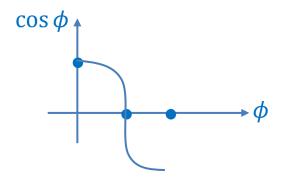
Find word
$$w$$
: $\underset{w}{argmax}$ $sim(e_w, e_{king} - e_{man} + e_{woman})$

Cosine similarity

$$sim(e_w, e_{king} - e_{man} + e_{woman})$$

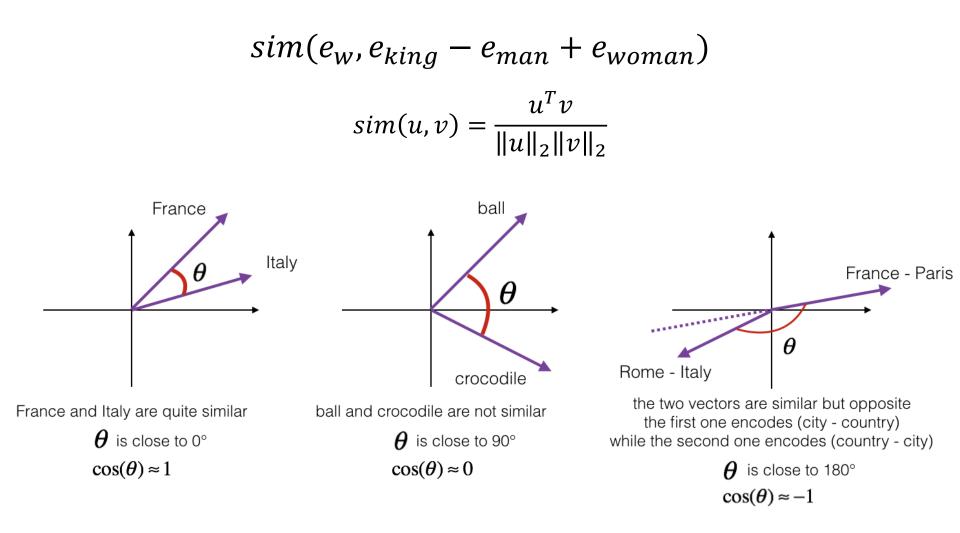
$$sim(u, v) = \frac{u^T v}{\|u\|_2 \|v\|_2}$$



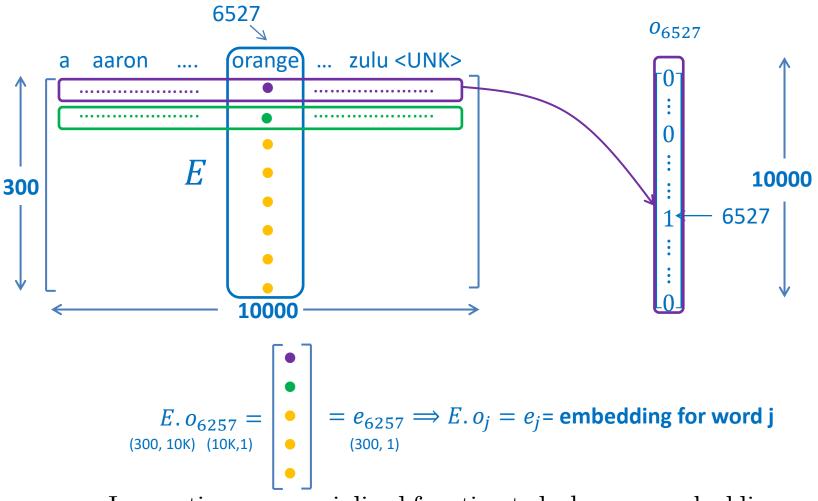


Man:Woman as Boy:Girl Ottawa:Canada as Nairobi:Kenya Big:Bigger as Tall:Taller Yen:Japan as Ruble: Russia

Cosine similarity

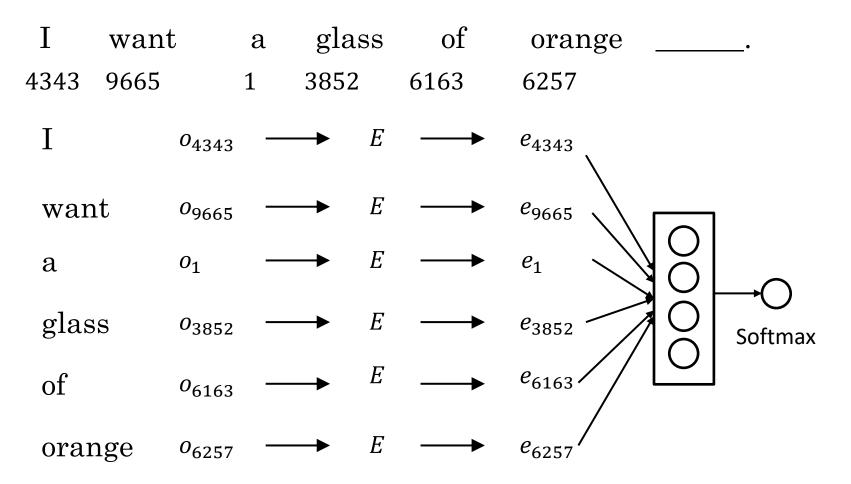


Embedding matrix



In practice, use specialized function to look up an embedding.

Neural language model



[[]Bengio et. al., 2003, A neural probabilistic language model]

Other context/target pairs

I want a glass of orange juice to go along with my cereal.

Context: Last 4 words.

4 words on left & right

Last 1 word

Nearby 1 word

WORD2VEC

Skip-grams

I want a glass of orange juice to go along with my cereal.

Context	<u>Target</u>
orange	juice
orange	glass
orange	my

[Mikolov et. al., 2013. Efficient estimation of word representations in vector space.]

Model

Vocab size = 10k

$$x \longrightarrow y$$

Context c (« orange ») Target t (« juice »)
 $6257 \longrightarrow 6257$ 4834
 $o_c \rightarrow E \longrightarrow e_c \longrightarrow o \longrightarrow \hat{y}$
 $e_c = Eo_c \longrightarrow \text{Softmax}$
Softmax : $p(t|c) = \frac{\exp(\theta_t^T e_c)}{\sum_{j=1}^{10,000} \exp(\theta_j^T e_c)}$ θ_t : parameter associated
with the output t
 $\mathcal{L}(\hat{y}, y) = -\sum_{i=1}^{10000} y_i \log \hat{y}_i$ $y = \begin{bmatrix} i \\ 1 \\ j \end{bmatrix} \leftarrow 4834$

Problems with softmax classification

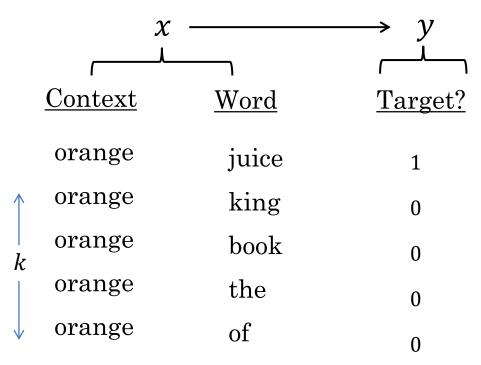
 $p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$ Very slow to compute !!!!

How to sample the context *c*?

NEGATIVE SAMPLING

Defining a new learning problem

I want a glass of orange juice to go along with my cereal.



k = 5 - 20: smaller dataset

k = 2 - 5: larger dataset

[Mikolov et. al., 2013. Distributed representation of words and phrases and their compositionality]

Model

 $p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$ Softmax: Sotmax: 10000 classes $P(y = 1 | c, t) = \sigma(\theta_t^T e_c)$ $o_{6257} \longrightarrow E \longrightarrow e_{6257}$ 10000

ν χ <u>word</u> target? context orange juice 1 orange king 0 orange book 0 orange the 0 of orange 0 $\boldsymbol{\mathcal{V}}$ С

10000 binary classification problem

Selecting negative examples

<u>context</u>	<u>word</u>	<u>target?</u>
orange	juice	1
orange	king	0
orange	book	0
orange	the	0
orange	of	0

$$p(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=1}^{10000} f(w_j)^{3/4}}$$

GLOVE WORD VECTORS

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

c,t

$X_{ij} = #$ times i appears in context of j.

$$X_{ij} = X_{ji}$$

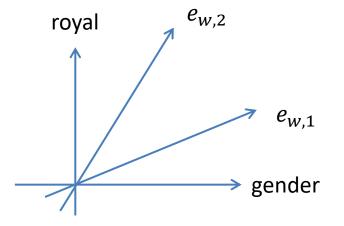
[Pennington et. al., 2014. GloVe: Global vectors for word representation]

Model

minimize $\sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i - b_j' - \log X_{ij})^2$

A note on the featurization view of word embeddings

		Woman (9853)	King (4914)	Queen (7157)
Gender	-1	1	-0.95	0.97
Royal	0.01	0.02	0.93	0.95
Age	0.03	0.02	0.70	0.69
Food	0.09	0.01	0.02	0.01



minimize
$$\sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i - b_j' - \log X_{ij})^2$$

SENTIMENT CLASSIFICATION

Sentiment classification problem

 $\boldsymbol{\chi}$

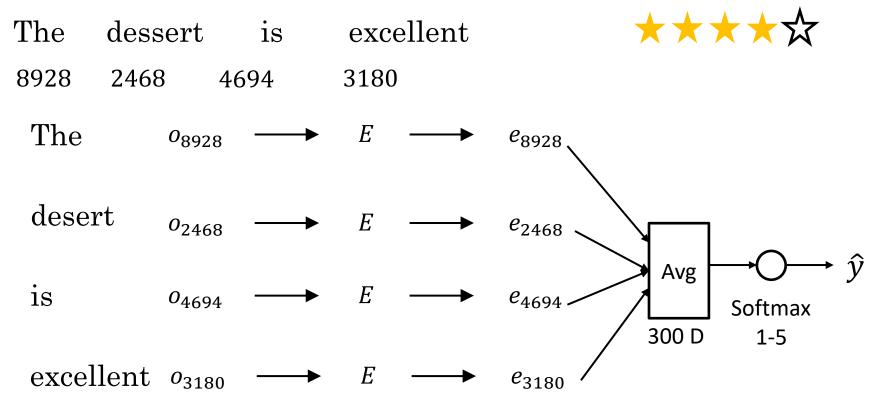
The dessert is excellent.

Service was quite slow.

Good for a quick meal, but nothing special.

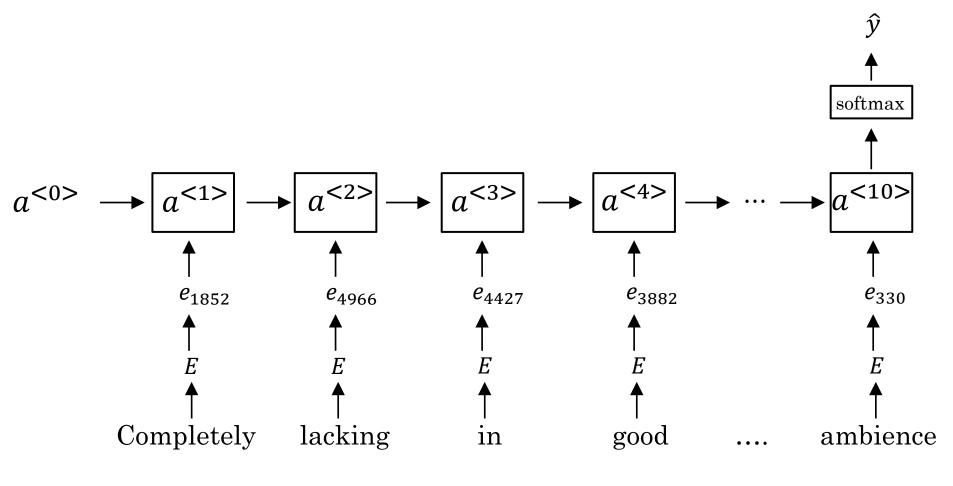
Completely lacking in good taste, good service, and good ambience.

Simple sentiment classification model



"Completely lacking in **good** taste, **good** service, and **good** ambience."

RNN for sentiment classification



Many-to-one

DEBIASING WORD EMBEDDINGS

The problem of bias in word embeddings

Man:Woman as King:Queen

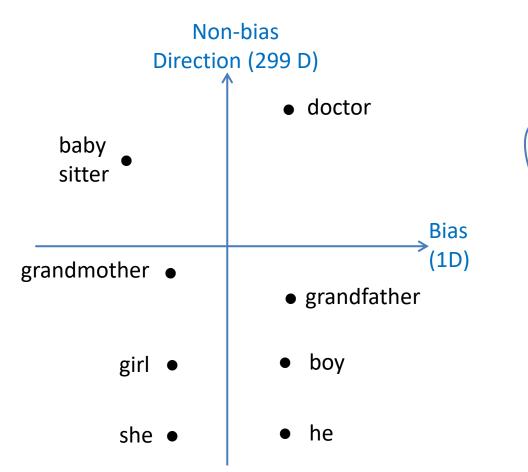
Man:Computer_Programmer as Woman:Homemaker

Father:Doctor as Mother: Nurse

Word embeddings can reflect gender, ethnicity, age, and other biases of the text used to train the model.

[Bolukbasi et. al., 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings]

Addressing bias in word embeddings



1. Identify bias direction. $\begin{bmatrix}
e_{he} - e_{she} \\
e_{male} - e_{female} \\
\vdots \\
Average
\end{bmatrix}$

2. Neutralize: For every word that is not definitional, project to get rid of bias.

3. Equalize pairs.

[Bolukbasi et. al., 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings]

References

- Andrew Ng. Deep learning. Coursera.
- Geoffrey Hinton. Neural Networks for Machine Learning.
- Kevin P. Murphy. Probabilistic Machine Learning An Introduction. MIT Press, 2022.
- MIT Deep Learning 6.S191 (http://introtodeeplearning.com/)