
Deep learning

Dr. Aissa Boulmerka

a.boulmerka@centre-univ-mila.dz

2023-2024

1

CHAPTER 8

CONVOLUTIONAL NEURAL NETWORKS (CNNS)
“DEEP CONVOLUTIONAL MODELS CASE STUDIES”

2

Outline

Classic networks:

• LeNet-5

ResNet (152)

Inception

• AlexNet

• VGG

3

LeNet - 5

⋮ ⋮
𝑦

32×32 ×1 28×28×6 14×14×6 10×10×16 5×5×16
120

84

5 × 5

s = 1

f = 2

s = 2

avg pool

5 × 5

s = 1

avg pool

f = 2

s = 2

[LeCun et al., 1998. Gradient-based learning applied to document recognition]

 CONV-POOL-CONV-POOL-FC-FC-FC-SOFTMAX

 60K parameters.

 Activation: Sigmoid/Tanh Relu

Softmax

10

4

AlexNet

=
⋮ ⋮

227×227 ×3

55×55 × 96 27×27 ×96 27×27 ×256 13×13 ×256

13×13 ×384 13×13 ×384 13×13 ×256 6×6 ×256
9216 4096

⋮

4096

11 × 11

s = 4

3 × 3

s = 2

MAX-POOL

5 × 5

same

3 × 3

s = 2

MAX-POOL

3 × 3

same

3 × 3

same

3 × 3

same

3 × 3

s = 2

MAX-POOL

Softmax

1000

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

 Similarly to LeNet, but much bigger (60 M parameters).

 ReLU

 Multiple GPUs

 Local Response Normalization (LRN)
5

VGG - 16

224×224 ×3

CONV = 3×3 filter, s = 1, same MAX-POOL = 2×2 , s = 2

[CONV 64]

×2

224×224×64

POOL
112×112 ×64

[CONV 128]

×2

112×112 ×128

POOL
56×56 ×128

[CONV 256]

×3

56×56 ×256
POOL

28×28 ×256
[CONV 512]

× 3

28×28 ×512
POOL

14×14×512

[CONV 512]

×3

14×14 ×512
POOL

7×7×512 FC
4096

FC
4096

Softmax
1000

[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]

138 M parameters
6

Residual Networks (ResNets)

 Very, very deep NNs are difficult to train because of vanishing and

exploding gradients problems.

 In this section we will learn about skip connection which makes you

take the activation from one layer and suddenly feed it to another layer

even much deeper in NN which allows you to train large NNs even with

layers greater than 100.

Residual block

 ResNets are built out of some Residual blocks.

7

Residual block

𝑎[𝑙] 𝑎[𝑙+2]

𝑧[𝑙+1] = 𝑊[𝑙+1] 𝑎[𝑙] + 𝑏[𝑙+1] 𝑎[𝑙+1] = 𝑔(𝑧[𝑙+1]) 𝑧[𝑙+2] = 𝑊[𝑙+2]𝑎[𝑙+1] + 𝑏[𝑙+2] 𝑎[𝑙+2] = 𝑔(𝑧[𝑙+2])

𝑎[𝑙+1]

[He et al., 2015. Deep residual networks for image recognition]

𝑎[𝑙] Linear ReLU Linear ReLU 𝑎[𝑙+2]

Short cut/Skip connection

8

Residual Network

x 𝑎[𝑙]

[He et al., 2015. Deep residual networks for image recognition]

layers
tr

ai
n

in
g
 e

rr
o
r

ResNet

layers

tr
ai

n
in

g
 e

rr
o
r

Plain

"reality"

"theory"

"Plain network" "Residual network"

9

Why do residual networks work?

x Big NN 𝑎[𝑙]

x Big NN
𝑎[𝑙] 𝑎[𝑙+2]

𝑅𝑒𝐿𝑈 𝑎 ≥ 0

𝑎[𝑙+2] = 𝑔 𝑧 𝑙+2 + 𝑎 𝑙

= 𝑔 𝑤 𝑙+2 𝑎 𝑙+1 + 𝑏 𝑙+2 + 𝑎 𝑙 = 𝑔 𝑎 𝑙 = 𝑎 𝑙

This show that identity function is easy for

a residual block to learn, consequently it

can train deeper NNs.

[He et al., 2015. Deep residual networks for image recognition]

Using a skip-connection helps the

gradient to backpropagate and thus

helps to train deeper networks

we are using L2 regularization for

example, W[l+2] will be zero. Lets

say that b[l+2] will be zero too.
10

ResNet

[He et al., 2015. Deep residual networks for image recognition]

Plain

ResNet

 All the 3x3 Conv are same Convs.

 No FC layers, No dropout is used.

 The dotted lines is the case when the dimensions are different. To solve then they down-sample the

input by 2 and then pad zeros to match the two dimensions.
11

Why does a 1 × 1 convolution do?

1 2 3 6 5 8
3 5 5 1 3 4
2 1 3 4 9 3
4 7 8 5 7 9
1 5 3 7 4 8
5 4 9 8 3 5

2 ∗ =

∗ =

6 × 6

6 × 6 × 32
1 × 1 × 32

6 × 6 × # filters

[Lin et al., 2013. Network in network]

𝟑𝟐 → # filters 𝒏𝒄
[𝐥+𝟏]

12

Using 1×1 convolutions

28 × 28 × 192

28 × 28 × 32

ReLU

CONV 1 × 1

32

[Lin et al., 2013. Network in network]
13

Motivation for inception network

28 × 28 × 192

1 × 1

3 × 3

5 × 5

MAX-POOL

128

32
32

64

Note: the colors are intended to correspond to the stacked small hand drawn cube

28

28

[Szegedy et al. 2014. Going deeper with convolutions]

Same

Same

Same

S=1

28 × 28 × 64

28 × 28 × 128

28 × 28 × 32

28 × 28 × 256

28 × 28 × 32

14

The problem of computational cost

28 × 28 × 192

CONV

5 × 5,

same,

32 28 × 28 × 32

32 filters filters are 5×5×192

2𝟖 ×2𝟖 ×32 × 5×5×192 = 120M

15

Using 1×1 convolution

28 × 28 × 192

CONV

1 × 1,

16,

1 × 1 × 192

28 × 28 × 16

CONV

5 × 5,

32,

5 × 5 × 16

28 × 28 × 32

2𝟖 ×2𝟖 ×16 × 192 = 2.4M 2𝟖 ×2𝟖 ×32 × 5×5×16 = 10.0M

 12.4M

120M
16

Inception module

Previous

Activation

1 × 1

CONV

1 × 1

CONV

3 × 3

CONV

1 × 1

CONV

5 × 5

CONV

MAXPOOL

3 × 3,s = 1

same

1 × 1
CONV

Channel

Concat

28 × 28 × 192

28 × 28 × 64

28×28×128

28 × 28 × 32

28 × 28 × 32

28 × 28 × 256

28 × 28 × 192 32 filters 1× 1× 192

96

16

17

Inception network

[Szegedy et al., 2014, Going Deeper with Convolutions]

GooLeNet

18

Using Open-Source Implementation

 Lot of convolutional neural network architectures are difficult to replicated.

because there are some details that may not presented on its papers. There are

some other reasons like:

o Learning decay.

o Parameter tuning.

 A lot of deep learning researchers are opening source their code into Internet on

sites like Github.

 If you see a research paper and you want to build over it, the first thing you

should do is to look for an open source implementation for this paper.

 Some advantage of doing this is that you might download the network

implementation along with its parameters/weights. The author might have used

multiple GPUs and spent some weeks to reach this result and its right in front of

you after you download it.

19

https://github.com/

Transfer Learning

 If you are using a specific neural network architecture that has been trained

before, you can use this pretrained parameters/weights instead of random

initialization to solve your problem.

 It can help you boost the performance of the neural network.

 The pretrained models might have been trained on a large datasets like

ImageNet, Ms COCO, or Pascal and took a lot of time to learn those

parameters/weights with optimized hyperparameters.

 This can save you a lot of time.

20

Transfer learning

𝑦

x 𝑦 1000 classes

Softmax

3 Classes:

1) Cat

2) Dog

3) Neither

trainable parameter = 0

or freeze = 1

Example 1:

Train

21

Transfer learning

𝑦

x 𝑦 1000 classes

Softmax

3 Classes:

1) Cat

2) Dog

3) Neither

Freeze

Example 2:

Train

22

Transfer learning

𝑦

x 𝑦 1000 classes

Softmax

3 Classes:

1) Cat

2) Dog

3) Neither

Example 3:

Train

23

Data Augmentation

 If data is increased, your deep neural network will perform better.

 Data augmentation is one of the techniques that deep learning uses to increase

the performance of deep neural networks.

 The majority of computer vision applications needs more data right now.

 Common augmentation methods:

 Mirroring.

 Cropping.

 Rotation.

 Shearing.

 Local warping.

 Color shifting.

 ….

24

Common augmentation methods

 Cropping :

25

Common augmentation methods

 Scaling:

26

Common augmentation methods

 Flipping :

27

Common augmentation methods

 Padding :

28

Common augmentation methods

 Rotation :

29

Common augmentation methods

 Affine transformation :

 For example, we add to R, G, and B some distortions that will make the

image identified as the same for the human but is different for the computer.

30

Common augmentation methods

 Color augmentation (brightness, contrast):

 There are an algorithm which is called PCA color augmentation that

decides the shifts needed automatically.

31

Common augmentation methods

 Color augmentation (Grayscale):

32

Common augmentation methods

 Color augmentation (saturation, hue):

33

Common augmentation methods

 Combination e.g. cropping after resizing:

34

Data vs. hand engineering

35

Lots of
data

Little
data

Speech
recognition

Image
recognition

Object
detection

 Simpler
algorithms

 Less hand-
engineering

 More hand-
engineering
(“hacks”)

Two sources of knowledge:
 Labeled data
 Hand engineered features/network architecture/other components.

Transfer
learning

Ensembling

36

 Train several networks

independently and average

their outputs.

 After choosing the best

architecture, initialize some of

that randomly and train them

independently.

 This can give improve results by

2%

 Slow down production by the

number of the ensembles. Also it

takes more memory as it saves

all the models in the memory.

 Can be used in competitions but

not in a real productions.

Multi-crop at test time

37

 Run classifier on

multiple versions of test

images and average

results.

 There is a technique

called 10 crops that

uses this.

 This can give a better

result in the production.

Use open source code

 Use architectures of networks published in the literature.

 Use open source implementations if possible.

 Use pretrained models and fine-tune on your dataset.

38

References

 Andrew Ng. Deep learning. Coursera.

 Geoffrey Hinton. Neural Networks for Machine Learning.

 Kevin P. Murphy. Probabilistic Machine Learning An Introduction. MIT

Press, 2022.

 MIT Deep Learning 6.S191 (http://introtodeeplearning.com/)

39

