
Deep learning

Dr. Aissa Boulmerka

a.boulmerka@centre-univ-mila.dz

2023-2024

1

CHAPTER 7

MACHINE LEARNING STRATEGY

2

Carrying out error analysis

3

 Error analysis - process of manually examining mistakes that

your algorithm is making. It can give you insights into what to

do next. E.g.:
 In the cat classification example, if you have 10% error on your dev set and

you want to decrease the error.

 You discovered that some of the mislabeled data are dog pictures that look like

cats. Should you try to make your cat classifier do better on dogs (this could

take some weeks)?

 Error analysis approach:
 Get 100 mislabeled dev set examples at random.

 Count up how many are dogs.

 if 5 of 100 are dogs then training your classifier to do better on dogs will decrease your error up

to 9.5% (called ceiling), which can be too little.

 if 50 of 100 are dogs then you could decrease your error up to 5%, which is reasonable and you

should work on that.

Carrying out error analysis

4

 Based on the last example, error analysis helps you to analyze the error before

taking an action that could take lot of time with no need.

 Sometimes, you can evaluate multiple error analysis ideas in parallel and choose the

best idea. Create a spreadsheet to do that and decide.

 In the last example you will decide to work on great cats or blurry images to

improve your performance.

 This quick counting procedure, which you can often do in, at most, small numbers

of hours can really help you make much better prioritization decisions, and

understand how promising different approaches are to work on.

Evaluate multiple ideas in parallel

5

 Ideas for cat detection:

 Fix pictures of dogs being recognized as cats

 Fix great cats (lions, panthers, etc..) being misrecognized

 Improve performance on blurry images

Image Dog Great Cats Blurry Instagram filters Comments

1 ✓ ✓ Pitbull

2 ✓ ✓ ✓

3 Rainy day at zoo

4 ✓

….

% of total 8% 43% 61% 12%

Cleaning up incorrectly labeled data

6

 DL algorithms are quite robust to random errors in the training set but less

robust to systematic errors. But you can go and fix these labels if you can.

 If you want to check for mislabeled data in dev/test set, you should also try

error analysis with the mislabeled column. Ex:

Image Dog Great Cats Blurry Incorrectly Labeled Comments

1 ✓

2 ✓ ✓ ✓ Lalbeler missed cat in
the background

3

4 ✓ ✓ Drawing of a cat: not
a real cat

% of total 8% 43% 61% 6%

Cleaning up incorrectly labeled data

7

 Then:
 If overall dev set error: 10%

 Then errors due to incorrect data: 0.6%

 Then errors due to other causes: 9.4%

 Then you should focus on the 9.4% error rather than the incorrect data.

Image Dog Great Cats Blurry Incorrectly Labeled Comments

1 ✓

2 ✓ ✓ ✓ Lalbeler missed cat in
the background

3

4 ✓ ✓ Drawing of a cat: not
a real cat

% of total 8% 43% 61% 6%

Correcting incorrect dev/test set examples

8

 Consider these guidelines while correcting the dev/test mislabeled examples:

 Apply the same process to your dev and test sets to make sure they continue to

come from the same distribution.

 Consider examining examples your algorithm got right as well as ones it got

wrong. (Not always done if you reached a good accuracy)

 Train and (dev/test) data may now come from a slightly different distributions.

 It's very important to have dev and test sets to come from the same distribution.

But it could be OK for a train set to come from slightly other distribution.

Build your first system quickly, then iterate

9

 The steps you take to make

your deep learning project:

 Setup dev/test set and

metric

 Build initial system

quickly

 Use Bias/Variance

analysis & Error analysis

to prioritize next steps.

• Noisy background

• Café noise

• Car noise

• Accented speech

• Far from microphone

• Young children’s speech

• Stuttering

• …

Guideline:

Build your first
system quickly,
then iterate

Training and testing on different distributions

10

 A lot of teams are working with deep learning applications that have training sets

that are different from the dev/test sets due to the hunger of deep learning to data.

 There are some strategies to follow up when training set distribution differs from

dev/test sets distribution.

 Option one (not recommended): shuffle all the data together and extract randomly

training and dev/test sets.

 Advantages: all the sets now come from the same distribution.

 Disadvantages: the other (real world) distribution that was in the dev/test sets will

occur less in the new dev/test sets and that might be not what you want to achieve.

 Option two: take some of the dev/test set examples and add them to the training set.

 Advantages: the distribution you care about is your target now.

 Disadvantage: the distributions in training and dev/test sets are now different. But

you will get a better performance over a long time.

Cat app example

Data from mobile app Data from webpages

≈ 𝟐𝟎𝟎 𝟎𝟎𝟎 ≈ 𝟏𝟎 𝟎𝟎𝟎

Training (Shuffle) Dev (Shuffle) Test (Shuffle)

205 000 2500 2500

Option 1:

Training (Web) Training (App) Dev (App) Test (App)

205 000 2500 2500

Option 2:

Speech recognition example

Purchased data

Smart speaker control

Voice keyboard

Speech activated

rearview mirror

…

Training Dev/test

≈ 𝟓𝟎𝟎 𝟎𝟎𝟎

≈ 𝟐𝟎 𝟎𝟎𝟎

Bias and Variance with mismatched data distributions

13

 Bias and Variance analysis changes when training and dev/test set is from

the different distribution.

 Example: the cat classification example. Suppose you've worked in the

example and reached this

 Human error: 0%

 Train error: 1%

 Dev error: 10%

 In this example, you'll think that this is a variance problem, but because

the distributions aren't the same you can't tell for sure. Because it could

be that train set was easy to train on, but the dev set was more difficult.

Bias and Variance with mismatched data distributions

14

 To solve this issue we create a new set called train-dev set as a random

subset of the training set (so it has the same distribution) and we get:

 Human error: 0%

 Train error: 1%

 Train-dev error: 9%

 Dev error: 10%

 Now we are sure that this is a high variance problem.

Bias and Variance with mismatched data distributions

15

 Suppose we have a different situation:

 Human error: 0%

 Train error: 1%

 Train-dev error: 1.5%

 Dev error: 10%

 In this case we have something called Data mismatch problem.

Bias and Variance with mismatched data distributions

16

Human error 0% 0% 0% 0%

Train set error 1% 1% 10% 10%

Train-dev error 9% 1.5% 11% 11%

Dev set error 10% 10% 12% 20%

High

variance

Data

mismatch

Avoidable bias

Avoidable

bias + Data

mismatch

Bias and Variance conclusions

17

i. Human-level error (proxy for Bayes error)

ii. Train error
 Calculate avoidable bias = training error - human level error

 If the difference is big then its Avoidable bias problem then you should use a strategy

for high bias.

iii. Train-dev error
 Calculate variance = training-dev error - training error

 If the difference is big then its high variance problem then you should use a strategy for

solving it.

iv. Dev error
 Calculate data mismatch = dev error - train_dev error

 If difference is much bigger then its Data mismatch problem.

v. Test error
 Calculate degree of overfitting to dev set = test error - dev error

 If the difference is big (positive) then maybe you need to find a bigger dev set.

 Unfortunately, there aren't many systematic ways to deal with data mismatch. There

are some things to try about this in the next section.

Addressing data mismatch

18

 There aren't completely systematic solutions to this, but there

some things you could try.

1. Carry out manual error analysis to try to understand

the difference between training and dev/test sets.

2. Make training data more similar, or collect more data

similar to dev/test sets.

Artificial data synthesis

19

 If your goal is to make the training data more similar to your dev set one of the

techniques you can use Artificial data synthesis that can help you make more

training data.

 Combine some of your training data with something that can convert it to the

dev/test set distribution.

 Examples:

a. Combine normal audio with car noise to get audio with car noise example.

b. Generate cars using 3D graphics in a car classification example (video

games).

 Be cautious and bear in mind whether or not you might be accidentally simulating

data only from a tiny subset of the space of all possible examples because your NN

might overfit these generated data (like particular car noise or a particular design

of 3D graphics cars).

x 𝑦

Transfer learning

𝑦

x 𝑦
Image

recognition
≈ 𝟏𝑴

Radiology
diagnostics

≈ 𝟏𝑲

𝑦

Transfer learning

21

 Apply the knowledge you took in a task A and apply it in another task B.

 For example, you have trained a cat classifier with a lot of data, you can

use the part of the trained NN it to solve x-ray classification problem.

 To do transfer learning, delete the last layer of NN and it's weights and:

i. Option 1: if you have a small data set - keep all the other weights as a fixed weights.

Add a new last layer(-s) and initialize the new layer weights and feed the new data to the

NN and learn the new weights.

ii. Option 2: if you have enough data you can retrain all the weights.

Transfer learning

22

 Option 1 and 2 are called fine-tuning and training on task A called

pretraining.

 When transfer learning make sense:

 Task A and B have the same input X (e.g. image, audio).

 You have a lot of data for the task A you are transferring from and relatively less data for

the task B your transferring to.

 Low level features from task A could be helpful for learning task B.

Multi-task learning

23

 Whereas in transfer learning, you have a sequential process where you

learn from task A and then transfer that to task B.

 In multi-task learning, you start off simultaneously, trying to have one

neural network do several things at the same time. And then each of these

tasks helps hopefully all of the other tasks.

 Example:

 You want to build an object recognition system that detects pedestrians, cars, stop

signs, and traffic lights (image has multiple labels).

 Then Y shape will be (4,m) because we have 4 classes and each one is a binary one.

 Then

𝐶𝑜𝑠𝑡 =
1

𝑚
 ℒ 𝑦 𝑗

(𝑖), 𝑦𝑗
(𝑖)4

𝑗=1
𝑚
𝑖=1

where ℒ 𝑦 𝑗
(𝑖), 𝑦𝑗

(𝑖) = −𝑦𝑗
𝑖 𝑙𝑜𝑔 𝑦 𝑗

(𝑖) − 1 − 𝑦𝑗
𝑖 𝑙𝑜𝑔 1 − 𝑦 𝑗

(𝑖)

Multi-task learning

24

 In the last example you could have trained 4 neural networks separately but if

some of the earlier features in neural network can be shared between these

different types of objects, then you find that training one neural network to do

four things results in better performance than training 4 completely separate

neural networks to do the four tasks separately.

 Multi-task learning will also work if Y isn't complete for some labels. For

example:

Y = [1 ? 1 ...]

[0 0 1 ...]

[? 1 ? ...]

 And in this case it will do good with the missing data, just the loss function will

be different.

Multi-task learning

25

 Multi-task learning makes sense:

i. Training on a set of tasks that could benefit from having shared lower-level

features.

ii. Usually, amount of data you have for each task is quite similar.

iii. Can train a big enough network to do well on all the tasks.

 If you can train a big enough NN, the performance of the

multi-task learning compared to splitting the tasks is better.

 Today transfer learning is used more often than multi-task

learning.

What is end-to-end deep learning?

26

 Some systems have multiple stages to implement. An end-to-end deep learning system

implements all these stages with a single NN.

Example 1:

 Speech recognition system:

Audio → Features → Phonemes → Words → Transcript : non-end-to-end system

Audio Transcript : end-to-end deep learning system

 End-to-end deep learning gives data more freedom, it might not use phonemes when training!

 To build the end-to-end deep learning system that works well, we need a big dataset (more

data then in non end-to end system). If we have a small dataset the ordinary implementation

could work just fine.

What is end-to-end deep learning?

27

Example 2:

 Face recognition system:

 Image Face recognition : end-to-end deep learning system

 Image → Face detection → Face recognition : deep learning system - best approach.

 In practice, the best approach is the second one for now.

 In the second implementation, it's a two steps approach where both parts are

implemented using deep learning.

 Its working well because it's harder to get a lot of pictures with people in front of the

camera than getting faces of people and compare them.

 In the second implementation at the last step, the NN takes two faces as an input and

outputs if the two faces are the same person or not.

What is end-to-end deep learning?

28

Example 3:

 Machine translation system:

 English → Text analysis → ⋯ → French : non-end-to-end system

 English French : end-to-end deep learning

system - best approach

 Here the end-to-end deep leaning system works better because we have

enough data to build it.

What is end-to-end deep learning?

29

Example 4:

Estimating child's age from the x-ray picture of a hand:

Image → Bones → Age : non-end-to-end system - best approach for now

Image Age : end-to-end system

In this example non-end-to-end system works better because we don't have

enough data to train end-to-end system.

Whether to use end-to-end deep learning

30

 Pros of end-to-end deep learning:

 Let the data speak. By having a pure machine learning approach, your NN learning input

from X to Y may be more able to capture whatever statistics are in the data, rather than

being forced to reflect human preconceptions.

 Less hand-designing of components needed.

 Cons of end-to-end deep learning:

 May need a large amount of data.

 Excludes potentially useful hand-design components (it helps more on the smaller

dataset).

 Applying end-to-end deep learning:

 Key question: Do you have sufficient data to learn a function of the complexity needed

to map x to y?

 Use ML/DL to learn some individual components.

 When applying supervised learning you should carefully choose what types of X to Y

mappings you want to learn depending on what task you can get data for.

References

 Andrew Ng. Deep learning. Coursera.

 Geoffrey Hinton. Neural Networks for Machine Learning.

 Kevin P. Murphy. Probabilistic Machine Learning An Introduction. MIT

Press, 2022.

 MIT Deep Learning 6.S191 (http://introtodeeplearning.com/)

31

