
Deep learning

Dr. Aissa Boulmerka

a.boulmerka@centre-univ-mila.dz

2023-2024

1

CHAPTER 6

HYPERPARAMETER TUNING, BATCH

NORMALIZATION AND PROGRAMMING

FRAMEWORKS

2

Tuning process

3

 We need to tune our hyperparameters to get the best out of them.

 Important hyperparameters are :

i. Learning rate (𝛼).

ii. Momentum beta (𝛽).

iii. Mini-batch size.

iv. Number of hidden units.

v. Number of layers.

vi. Learning rate decay.

vii. Regularization lambda.

viii. Activation functions.

ix. Adam beta1 & beta2 .

 Its hard to decide which hyperparameter is the most important in a problem. It

depends on your problem.

Try random values: Don’t use a grid

4

 One of the ways to tune is to sample a grid with N hyperparameter settings and

then try all settings combinations on your problem.

 PROBLEM: One iteration takes a long time ==> NOT AS IMPORTANT.

 SOLUTION: Try random values: don't use a grid.

Hyperparameter 2

H
y
p

er
p
ar

am
et

er
 1

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

Hyperparameter 2

H
y
p

er
p

ar
am

et
er

 1

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • • GRID SEARCH

Coarse to fine

5

 You can use Coarse to fine sampling scheme :
 When you find some hyperparameters values that give you a better performance : zoom into a smaller

region around these values and sample more densely within this space.

 These methods can be automated.

Hyperparameter 2

H
y
p

er
p

ar
am

et
er

 1

• • • • • • •

 • • • • • • •

 • • • • • • •

• • • • • • •

 • • • • • • • •

 • • • • • • • •

 • • • • • • • • •

 • • • • • • •

• • • • • •

• • • • • • •

 • • • • • • •

 • • • • • •

Picking hyperparameters at random

6

𝒏,𝒍- = 𝟓𝟎,⋯ , 𝟏𝟎𝟎

#layers : 𝑳 = 𝟐,⋯ , 𝟓

𝟐, 𝟑, 𝟒, 𝟓

𝟓𝟎 𝟏𝟎𝟎

× × × × × × × × × × × ×

Appropriate scale for hyperparameters

7

𝜶 = 𝟎. 𝟎𝟎𝟎𝟏,⋯ , 𝟏

𝟎. 𝟎𝟎𝟎𝟏 𝟏

× × × × × × × × × × × ×

𝟎. 𝟎𝟎𝟎𝟏 𝟏

× × × × × × × × × × × × × × × × ×

𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟏 𝟎. 𝟏

Using an appropriate scale to pick hyperparameters

8

 Let's say you have a specific range for a hyperparameter from "a" to "b". It's better

to search for the right ones using the logarithmic scale rather than in linear scale:

 It uniformly samples values in log scale from [a,b].

Calculate: a_log = log(a) # e.g. a = 0.0001 then a_log = -4

Calculate: b_log = log(b) # e.g. b = 1 then b_log = 0

Then:

r = (a_log - b_log) * np.random.rand() + b_log

In the example the range would be from [-4, 0] because rand range [0,1)

result = 10^r

Hyperparameters for exponentially weighted averages

9

 If we want to use the last method on exploring on the "momentum beta":

o Beta (𝛽) best range is from 0.9 to 0.999.

o You should search for 1 - beta in range 0.001 to 0.1 (1 - 0.9 and 1 - 0.999) and then use

a = 0.001 and b = 0.1

o Then:

a_log = -3

b_log = -1

r = (a_log - b_log) * np.random.rand() + b_log

beta = 1 - 10^r # because 1 - beta = 10^r

Re-test hyperparameters occasionally

10

 NLP, Vision, Speech, Ads, logistics, ….

 Intuitions do get stale.

 Re-evaluate occasionally.

 Intuitions about hyperparameter

settings from one application area may

or may not transfer to a different one.

Hyperparameters tuning in practice: Pandas vs. Caviar

11

 If you don't have much computational resources you can use the "babysitting model":
o Day 0 you might initialize your parameter as random and then start training.

o Then you watch your learning curve gradually decrease over the day.

o And each day you nudge your parameters a little during training.

o Called panda approach.

 If you have enough computational resources, you can run some models in parallel and at

the end of the day(s) you check the results.
o Called Caviar approach.

Panda Caviar

Batch Normalization

12

 Batch norm is one of the most important ideas in the rise of deep learning (*).

 Batch Normalization speeds up learning.

 Before we normalized input by subtracting the mean and dividing by variance. This

helped a lot for the shape of the cost function and for reaching the minimum point

faster.

 The question is: for any hidden layer can we normalize 𝐴,𝑙- to train 𝑊,𝑙-, 𝑏,𝑙-
faster? This is what batch normalization is about.

(*) Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate
shift." International conference on machine learning. ICML, 2015.

𝜇 =
1

𝑚
 𝑥(𝑖)

𝑖

𝑋 = 𝑋 − 𝜇

𝜎2 =
1

𝑚
 𝑥(𝑖)2

𝑖

𝑋 = 𝑋 𝜎2

Implementing Batch Norm

13

Given 𝑍,𝑙- = 𝑧 1 , ⋯ , 𝑧 𝑚 , 𝑖 = 1 𝑡𝑜 𝑚 (for each input)

 Compute the mean: 𝜇 =
1

𝑚
 𝑧(𝑖)𝑖

 Compute the variance: 𝜎2 =
1

𝑚
 𝑧(𝑖) − 𝜇

2
𝑖

 𝑧𝑛𝑜𝑟𝑚
(𝑖)

=
𝑧(𝑖)−𝜇

𝜎2+𝜀
 (add 𝜀 epsilon for numerical stability if 𝜎2 = 0)

o Forcing the inputs to a distribution with zero mean and variance of 1.

 𝑧 (𝑖) = 𝛾𝑧𝑛𝑜𝑟𝑚
(𝑖)

+ 𝛽

o To make inputs belong to other distribution (with other mean and variance).

o 𝛾 (gamma) and 𝛽 (beta) are learnable parameters of the model.

o Making the NN learn the distribution of the outputs.

o Note: if 𝛾 = 𝜎2 + 𝜀 and 𝛽 = 𝜇 then 𝑧 (𝑖) = 𝑧(𝑖)

Adding Batch Norm to a network

14

 The NN parameters will be:

 Parameters:

 If you are using a deep learning framework, you should not implement batch norm

yourself. For example, in Tensorflow you can add this line:
tf.nn.batch-normalization()

𝑥1

𝑥2 𝑦

𝑥3

𝑋 𝑍,1- 𝑍 ,1-
𝑊,1-, 𝑏,1- 𝛾,1-, 𝛽,1-

𝑎,1- = 𝑔,1- 𝑍 ,1-
𝑊,2-, 𝑏,2-

𝑍,2-
𝛾,2-, 𝛽,2-

⋯
Bach Norm (BN) Bach Norm (BN)

𝑊,1-, 𝑏,1- ,𝑊,2-,𝑏,2-, ⋯ ,𝑊,𝐿-, 𝑏,𝐿-

𝛾,1-, 𝛽,1- , 𝛾,2-,𝛽,2-, ⋯ , 𝛾,𝐿-, 𝛽,𝐿-
Back-prop:

𝛽,𝑙- = 𝛽,𝑙- − 𝛼𝑑𝛽,𝑙-

Working with mini-batches

15

 Batch normalization is usually applied with mini-batches.

 If we are using batch normalization, parameters 𝑏,1-, ⋯ , 𝑏,𝐿- doesn't count because

they will be eliminated after mean subtraction step because taking the mean of a

constant 𝑏,𝑙- will eliminate the 𝑏,𝑙-.
 So if you are using batch normalization, you can remove 𝑏,𝑙- or make it always

zero.

 So the parameters will be 𝑊,𝑙- , 𝛽,𝑙- , and 𝛾,𝑙- .

 Shapes:
 𝑍,𝑙- ∶ (𝑛,𝑙-, 1)
 𝛽,𝑙- ∶ (𝑛,𝑙-, 1)
 𝛾,𝑙- ∶ (𝑛,𝑙-, 1)

𝑋*1+ 𝑍,1- 𝑍 ,1-
𝑊,1-, 𝑏,1- 𝛾,1-, 𝛽,1-

𝑎,1- = 𝑔,1- 𝑍 ,1-
𝑊,2-, 𝑏,2-

𝑍,2- ⋯
BN BN

𝑋*2+ 𝑍,1- 𝑍 ,1-
𝑊,1-, 𝑏,1- 𝛾,1-, 𝛽,1-

⋯
BN

𝑋*3+ ⋯
𝑊,1-, 𝑏,1-

Implementing gradient descent

16

For t = 1 … numMiniBatches

 1) Compute forwardprop on 𝑋*𝑡+

 In each hidden layer 𝑙, use BN to replace 𝑍,𝑙- with 𝑍 ,𝑙-

 2) Use backprop to compute 𝑑𝑊,𝑙-, 𝑑𝑏,𝑙-, 𝑑𝛽,𝑙-, 𝑑𝛾,𝑙-

 3) Update parameters:

𝑊,𝑙- = 𝑊,𝑙- − 𝛼𝑑𝑊,𝑙-

𝑏,𝑙- = 𝑏,𝑙- − 𝛼𝑑𝑏,𝑙-

𝛽,𝑙- = 𝛽,𝑙- − 𝛼𝑑𝛽,𝑙-

𝛾,𝑙- = 𝛾,𝑙- − 𝛼𝑑𝛾,𝑙-

 Works with momentum, RMSprop, Adam.

Why does Batch normalization work?

17

 The first reason is the same reason as why we normalize 𝑋.

 The second reason is that batch normalization reduces the

problem of input values changing (shifting).

 Batch normalization does some regularization.

Batch Norm as regularization

18

 Batch normalization does some regularization:

o Each mini batch is scaled by the mean/variance computed of that mini-batch.

o This adds some noise to the values 𝑍,𝑙- within that mini batch. So similar to dropout it

adds some noise to each hidden layer's activations.

o This has a slight regularization effect.

o Using bigger size of the mini-batch you are reducing noise and therefore regularization

effect.

o Don't rely on batch normalization as a regularization. It's intended for normalization of

hidden units, activations and therefore speeding up learning. For regularization use other

regularization techniques (L2 or dropout).

Multi-class classification (Softmax regression)

19

 Recognizing cats, dogs, and baby chicks

3 1 2 0 3 2 0 1

𝑪 = # 𝑪𝒍𝒂𝒔𝒔𝒆𝒔 = 𝟒 (𝟎, 𝟏, 𝟐, 𝟑)

𝑃(𝑜𝑡ℎ𝑒𝑟|𝑋)

𝑃(𝑐𝑎𝑡|𝑋)

𝑃(𝑑𝑜𝑔|𝑋)

𝑃(𝑏𝑎𝑏𝑦 𝑐ℎ𝑖𝑐𝑘𝑠|𝑋)

𝒚 𝒉𝒂𝒔 𝒂 𝒔𝒊𝒛𝒆 𝒐𝒇 (𝟏, 𝟒)

Softmax layer

20

𝑍,𝐿- = 𝑊,𝐿-𝑎,𝐿−1- + 𝑏,𝐿- ⇒ (4,1)

Activation function:

𝑡 = 𝑒 𝑍,𝐿-

𝑦 = 𝑎,𝐿- =
𝑒𝑍

,𝐿-

 𝑡𝑗
4
𝑗=1

, 𝑎𝑖
,𝐿-

=
𝑡𝑖

 𝑡𝑗
4
𝑗=1

𝑎,𝐿- = 𝑔,𝐿- 𝑧,𝐿-

𝑍,𝐿- =

5
2
−1
3

𝑡 =

𝑒5

𝑒2

𝑒−1

𝑒3

=

148.4
7.4
0.4
20.1

 , 𝑡𝑗

4

𝑗=1

= 176.3

𝑎,𝐿- =
𝑡

176.3

=

148.4

176.3
7.4

176.3

0.4

176.3

20.1

176.3

=

0.842
0.042
0.002
0.114

0

1

2

3

Softmax examples

21

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

Understanding softmax

22

𝑍,𝐿- =

5
2
−1
3

 𝑡 =

𝑒5

𝑒2

𝑒−1

𝑒3

 #𝑪𝒍𝒂𝒔𝒆𝒆𝒔 𝑪 = 𝟒

𝑎,𝐿- = 𝑔,𝐿- 𝑍,𝐿- =

𝑒5 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3

𝑒2 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3

𝑒−1 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3

𝑒3 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3

=

0.842
0.042
0.002
0.114

Softmax regression generalizes logistic regression to C classes

If C = 2 Softmax reduces to logistic regression.

4,1

1
0
0
0

Softmax Hard max

Loss function

23

𝑦(𝑖) =

𝑦1
𝑦2
𝑦3
𝑦4

=

0
1
0
0

, 𝑎,𝐿-(𝑖) = 𝑦 (𝑖) =

0.3
0.2
0.1
0.4

 #𝑪𝒍𝒂𝒔𝒆𝒆𝒔 𝑪 = 𝟒

ℒ 𝑦 , 𝑦 = − 𝑦𝑗𝑙𝑜𝑔 𝑦 𝑗

𝐶

𝑗=1

 𝐽 𝑊 1 , 𝑏 1 , … =
1

𝑚
 ℒ 𝑦 (𝑖), 𝑦(𝑖)

𝑚

𝑖=1

Example: ℒ 𝑦 , 𝑦 = −𝑦2𝑙𝑜𝑔 𝑦 2 = −𝑙𝑜𝑔 𝑦 2
Small ℒ 𝑦 , 𝑦 ⇒ make 𝑦 2 big.

Vectorization:

𝑌 = 𝑦(1), 𝑦(2), ⋯ , 𝑦(𝑚) 𝑌 = 𝑦 (1), 𝑦 (2), ⋯ , 𝑦 (𝑚)

=

0 0 1 .
1 0 0 .
0
0

1
0

0
0

.

.

 =

0.3 . . .
0.2 . . .
0.1
0.4

.

.
.
.

.

.

4,𝑚

4,1

4,𝑚

Deep learning frameworks

24

 It's not practical to implement everything from scratch. Our numpy

implementations were to know how NN works.

 There are many good deep learning frameworks.

 Deep learning is now in the phase of doing something with the frameworks

and not from scratch to keep on going.

 Here are some of the leading deep learning frameworks:

 Choosing deep learning frameworks

o Ease of programming (development and deployment)

o Running speed

o Truly open (open source with good governance)

Caffe/Caffe2 CNTK DL4J

Keras Torch mxnet

PaddlePaddle TensorFlow Theano

TensorFlow

25

 In this section we will learn the basic structure of TensorFlow programs.

 Demo 1: Optmization of a simple quadratic equation.

 Implement a minimization function. For example the function:

𝑱(𝒘) = 𝒘𝟐 − 𝟏𝟐𝒘+ 𝟑𝟔

 The result should be 𝒘 = 𝟔 as the function is 𝒘− 𝟔 𝟐 = 𝟎

 Demo 2: Classification of digit images

References

 Andrew Ng. Deep learning. Coursera.

 Geoffrey Hinton. Neural Networks for Machine Learning.

 Kevin P. Murphy. Probabilistic Machine Learning An Introduction. MIT

Press, 2022.

 MIT Deep Learning 6.S191 (http://introtodeeplearning.com/)

26

