
Deep learning

Dr. Aissa Boulmerka

a.boulmerka@centre-univ-mila.dz

2023-2024

1

CHAPTER 6

HYPERPARAMETER TUNING, BATCH

NORMALIZATION AND PROGRAMMING

FRAMEWORKS

2

Tuning process

3

 We need to tune our hyperparameters to get the best out of them.

 Important hyperparameters are :

i. Learning rate (𝛼).

ii. Momentum beta (𝛽).

iii. Mini-batch size.

iv. Number of hidden units.

v. Number of layers.

vi. Learning rate decay.

vii. Regularization lambda.

viii. Activation functions.

ix. Adam beta1 & beta2 .

 Its hard to decide which hyperparameter is the most important in a problem. It

depends on your problem.

Try random values: Don’t use a grid

4

 One of the ways to tune is to sample a grid with N hyperparameter settings and

then try all settings combinations on your problem.

 PROBLEM: One iteration takes a long time ==> NOT AS IMPORTANT.

 SOLUTION: Try random values: don't use a grid.

Hyperparameter 2

H
y
p

er
p
ar

am
et

er
 1

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

Hyperparameter 2

H
y
p

er
p

ar
am

et
er

 1

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • • GRID SEARCH

Coarse to fine

5

 You can use Coarse to fine sampling scheme :
 When you find some hyperparameters values that give you a better performance : zoom into a smaller

region around these values and sample more densely within this space.

 These methods can be automated.

Hyperparameter 2

H
y
p

er
p

ar
am

et
er

 1

• • • • • • •

 • • • • • • •

 • • • • • • •

• • • • • • •

 • • • • • • • •

 • • • • • • • •

 • • • • • • • • •

 • • • • • • •

• • • • • •

• • • • • • •

 • • • • • • •

 • • • • • •

Picking hyperparameters at random

6

𝒏,𝒍- = 𝟓𝟎,⋯ , 𝟏𝟎𝟎

#layers : 𝑳 = 𝟐,⋯ , 𝟓

𝟐, 𝟑, 𝟒, 𝟓

𝟓𝟎 𝟏𝟎𝟎

× × × × × × × × × × × ×

Appropriate scale for hyperparameters

7

𝜶 = 𝟎. 𝟎𝟎𝟎𝟏,⋯ , 𝟏

𝟎. 𝟎𝟎𝟎𝟏 𝟏

× × × × × × × × × × × ×

𝟎. 𝟎𝟎𝟎𝟏 𝟏

× × × × × × × × × × × × × × × × ×

𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟏 𝟎. 𝟏

Using an appropriate scale to pick hyperparameters

8

 Let's say you have a specific range for a hyperparameter from "a" to "b". It's better

to search for the right ones using the logarithmic scale rather than in linear scale:

 It uniformly samples values in log scale from [a,b].

Calculate: a_log = log(a) # e.g. a = 0.0001 then a_log = -4

Calculate: b_log = log(b) # e.g. b = 1 then b_log = 0

Then:

r = (a_log - b_log) * np.random.rand() + b_log

In the example the range would be from [-4, 0] because rand range [0,1)

result = 10^r

Hyperparameters for exponentially weighted averages

9

 If we want to use the last method on exploring on the "momentum beta":

o Beta (𝛽) best range is from 0.9 to 0.999.

o You should search for 1 - beta in range 0.001 to 0.1 (1 - 0.9 and 1 - 0.999) and then use

a = 0.001 and b = 0.1

o Then:

a_log = -3

b_log = -1

r = (a_log - b_log) * np.random.rand() + b_log

beta = 1 - 10^r # because 1 - beta = 10^r

Re-test hyperparameters occasionally

10

 NLP, Vision, Speech, Ads, logistics, ….

 Intuitions do get stale.

 Re-evaluate occasionally.

 Intuitions about hyperparameter

settings from one application area may

or may not transfer to a different one.

Hyperparameters tuning in practice: Pandas vs. Caviar

11

 If you don't have much computational resources you can use the "babysitting model":
o Day 0 you might initialize your parameter as random and then start training.

o Then you watch your learning curve gradually decrease over the day.

o And each day you nudge your parameters a little during training.

o Called panda approach.

 If you have enough computational resources, you can run some models in parallel and at

the end of the day(s) you check the results.
o Called Caviar approach.

Panda Caviar

Batch Normalization

12

 Batch norm is one of the most important ideas in the rise of deep learning (*).

 Batch Normalization speeds up learning.

 Before we normalized input by subtracting the mean and dividing by variance. This

helped a lot for the shape of the cost function and for reaching the minimum point

faster.

 The question is: for any hidden layer can we normalize 𝐴,𝑙- to train 𝑊,𝑙-, 𝑏,𝑙-
faster? This is what batch normalization is about.

(*) Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate
shift." International conference on machine learning. ICML, 2015.

𝜇 =
1

𝑚
 𝑥(𝑖)

𝑖

𝑋 = 𝑋 − 𝜇

𝜎2 =
1

𝑚
 𝑥(𝑖)2

𝑖

𝑋 = 𝑋 𝜎2

Implementing Batch Norm

13

Given 𝑍,𝑙- = 𝑧 1 , ⋯ , 𝑧 𝑚 , 𝑖 = 1 𝑡𝑜 𝑚 (for each input)

 Compute the mean: 𝜇 =
1

𝑚
 𝑧(𝑖)𝑖

 Compute the variance: 𝜎2 =
1

𝑚
 𝑧(𝑖) − 𝜇

2
𝑖

 𝑧𝑛𝑜𝑟𝑚
(𝑖)

=
𝑧(𝑖)−𝜇

𝜎2+𝜀
 (add 𝜀 epsilon for numerical stability if 𝜎2 = 0)

o Forcing the inputs to a distribution with zero mean and variance of 1.

 𝑧 (𝑖) = 𝛾𝑧𝑛𝑜𝑟𝑚
(𝑖)

+ 𝛽

o To make inputs belong to other distribution (with other mean and variance).

o 𝛾 (gamma) and 𝛽 (beta) are learnable parameters of the model.

o Making the NN learn the distribution of the outputs.

o Note: if 𝛾 = 𝜎2 + 𝜀 and 𝛽 = 𝜇 then 𝑧 (𝑖) = 𝑧(𝑖)

Adding Batch Norm to a network

14

 The NN parameters will be:

 Parameters:

 If you are using a deep learning framework, you should not implement batch norm

yourself. For example, in Tensorflow you can add this line:
tf.nn.batch-normalization()

𝑥1

𝑥2 𝑦

𝑥3

𝑋 𝑍,1- 𝑍 ,1-
𝑊,1-, 𝑏,1- 𝛾,1-, 𝛽,1-

𝑎,1- = 𝑔,1- 𝑍 ,1-
𝑊,2-, 𝑏,2-

𝑍,2-
𝛾,2-, 𝛽,2-

⋯
Bach Norm (BN) Bach Norm (BN)

𝑊,1-, 𝑏,1- ,𝑊,2-,𝑏,2-, ⋯ ,𝑊,𝐿-, 𝑏,𝐿-

𝛾,1-, 𝛽,1- , 𝛾,2-,𝛽,2-, ⋯ , 𝛾,𝐿-, 𝛽,𝐿-
Back-prop:

𝛽,𝑙- = 𝛽,𝑙- − 𝛼𝑑𝛽,𝑙-

Working with mini-batches

15

 Batch normalization is usually applied with mini-batches.

 If we are using batch normalization, parameters 𝑏,1-, ⋯ , 𝑏,𝐿- doesn't count because

they will be eliminated after mean subtraction step because taking the mean of a

constant 𝑏,𝑙- will eliminate the 𝑏,𝑙-.
 So if you are using batch normalization, you can remove 𝑏,𝑙- or make it always

zero.

 So the parameters will be 𝑊,𝑙- , 𝛽,𝑙- , and 𝛾,𝑙- .

 Shapes:
 𝑍,𝑙- ∶ (𝑛,𝑙-, 1)
 𝛽,𝑙- ∶ (𝑛,𝑙-, 1)
 𝛾,𝑙- ∶ (𝑛,𝑙-, 1)

𝑋*1+ 𝑍,1- 𝑍 ,1-
𝑊,1-, 𝑏,1- 𝛾,1-, 𝛽,1-

𝑎,1- = 𝑔,1- 𝑍 ,1-
𝑊,2-, 𝑏,2-

𝑍,2- ⋯
BN BN

𝑋*2+ 𝑍,1- 𝑍 ,1-
𝑊,1-, 𝑏,1- 𝛾,1-, 𝛽,1-

⋯
BN

𝑋*3+ ⋯
𝑊,1-, 𝑏,1-

Implementing gradient descent

16

For t = 1 … numMiniBatches

 1) Compute forwardprop on 𝑋*𝑡+

 In each hidden layer 𝑙, use BN to replace 𝑍,𝑙- with 𝑍 ,𝑙-

 2) Use backprop to compute 𝑑𝑊,𝑙-, 𝑑𝑏,𝑙-, 𝑑𝛽,𝑙-, 𝑑𝛾,𝑙-

 3) Update parameters:

𝑊,𝑙- = 𝑊,𝑙- − 𝛼𝑑𝑊,𝑙-

𝑏,𝑙- = 𝑏,𝑙- − 𝛼𝑑𝑏,𝑙-

𝛽,𝑙- = 𝛽,𝑙- − 𝛼𝑑𝛽,𝑙-

𝛾,𝑙- = 𝛾,𝑙- − 𝛼𝑑𝛾,𝑙-

 Works with momentum, RMSprop, Adam.

Why does Batch normalization work?

17

 The first reason is the same reason as why we normalize 𝑋.

 The second reason is that batch normalization reduces the

problem of input values changing (shifting).

 Batch normalization does some regularization.

Batch Norm as regularization

18

 Batch normalization does some regularization:

o Each mini batch is scaled by the mean/variance computed of that mini-batch.

o This adds some noise to the values 𝑍,𝑙- within that mini batch. So similar to dropout it

adds some noise to each hidden layer's activations.

o This has a slight regularization effect.

o Using bigger size of the mini-batch you are reducing noise and therefore regularization

effect.

o Don't rely on batch normalization as a regularization. It's intended for normalization of

hidden units, activations and therefore speeding up learning. For regularization use other

regularization techniques (L2 or dropout).

Multi-class classification (Softmax regression)

19

 Recognizing cats, dogs, and baby chicks

3 1 2 0 3 2 0 1

𝑪 = # 𝑪𝒍𝒂𝒔𝒔𝒆𝒔 = 𝟒 (𝟎, 𝟏, 𝟐, 𝟑)

𝑃(𝑜𝑡ℎ𝑒𝑟|𝑋)

𝑃(𝑐𝑎𝑡|𝑋)

𝑃(𝑑𝑜𝑔|𝑋)

𝑃(𝑏𝑎𝑏𝑦 𝑐ℎ𝑖𝑐𝑘𝑠|𝑋)

𝒚 𝒉𝒂𝒔 𝒂 𝒔𝒊𝒛𝒆 𝒐𝒇 (𝟏, 𝟒)

Softmax layer

20

𝑍,𝐿- = 𝑊,𝐿-𝑎,𝐿−1- + 𝑏,𝐿- ⇒ (4,1)

Activation function:

𝑡 = 𝑒 𝑍,𝐿-

𝑦 = 𝑎,𝐿- =
𝑒𝑍

,𝐿-

 𝑡𝑗
4
𝑗=1

, 𝑎𝑖
,𝐿-

=
𝑡𝑖

 𝑡𝑗
4
𝑗=1

𝑎,𝐿- = 𝑔,𝐿- 𝑧,𝐿-

𝑍,𝐿- =

5
2
−1
3

𝑡 =

𝑒5

𝑒2

𝑒−1

𝑒3

=

148.4
7.4
0.4
20.1

 , 𝑡𝑗

4

𝑗=1

= 176.3

𝑎,𝐿- =
𝑡

176.3

=

148.4

176.3
7.4

176.3

0.4

176.3

20.1

176.3

=

0.842
0.042
0.002
0.114

0

1

2

3

Softmax examples

21

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

Understanding softmax

22

𝑍,𝐿- =

5
2
−1
3

 𝑡 =

𝑒5

𝑒2

𝑒−1

𝑒3

 #𝑪𝒍𝒂𝒔𝒆𝒆𝒔 𝑪 = 𝟒

𝑎,𝐿- = 𝑔,𝐿- 𝑍,𝐿- =

𝑒5 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3

𝑒2 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3

𝑒−1 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3

𝑒3 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3

=

0.842
0.042
0.002
0.114

Softmax regression generalizes logistic regression to C classes

If C = 2 Softmax reduces to logistic regression.

4,1

1
0
0
0

Softmax Hard max

Loss function

23

𝑦(𝑖) =

𝑦1
𝑦2
𝑦3
𝑦4

=

0
1
0
0

, 𝑎,𝐿-(𝑖) = 𝑦 (𝑖) =

0.3
0.2
0.1
0.4

 #𝑪𝒍𝒂𝒔𝒆𝒆𝒔 𝑪 = 𝟒

ℒ 𝑦 , 𝑦 = − 𝑦𝑗𝑙𝑜𝑔 𝑦 𝑗

𝐶

𝑗=1

 𝐽 𝑊 1 , 𝑏 1 , … =
1

𝑚
 ℒ 𝑦 (𝑖), 𝑦(𝑖)

𝑚

𝑖=1

Example: ℒ 𝑦 , 𝑦 = −𝑦2𝑙𝑜𝑔 𝑦 2 = −𝑙𝑜𝑔 𝑦 2
Small ℒ 𝑦 , 𝑦 ⇒ make 𝑦 2 big.

Vectorization:

𝑌 = 𝑦(1), 𝑦(2), ⋯ , 𝑦(𝑚) 𝑌 = 𝑦 (1), 𝑦 (2), ⋯ , 𝑦 (𝑚)

=

0 0 1 .
1 0 0 .
0
0

1
0

0
0

.

.

 =

0.3 . . .
0.2 . . .
0.1
0.4

.

.
.
.

.

.

4,𝑚

4,1

4,𝑚

Deep learning frameworks

24

 It's not practical to implement everything from scratch. Our numpy

implementations were to know how NN works.

 There are many good deep learning frameworks.

 Deep learning is now in the phase of doing something with the frameworks

and not from scratch to keep on going.

 Here are some of the leading deep learning frameworks:

 Choosing deep learning frameworks

o Ease of programming (development and deployment)

o Running speed

o Truly open (open source with good governance)

Caffe/Caffe2 CNTK DL4J

Keras Torch mxnet

PaddlePaddle TensorFlow Theano

TensorFlow

25

 In this section we will learn the basic structure of TensorFlow programs.

 Demo 1: Optmization of a simple quadratic equation.

 Implement a minimization function. For example the function:

𝑱(𝒘) = 𝒘𝟐 − 𝟏𝟐𝒘+ 𝟑𝟔

 The result should be 𝒘 = 𝟔 as the function is 𝒘− 𝟔 𝟐 = 𝟎

 Demo 2: Classification of digit images

References

 Andrew Ng. Deep learning. Coursera.

 Geoffrey Hinton. Neural Networks for Machine Learning.

 Kevin P. Murphy. Probabilistic Machine Learning An Introduction. MIT

Press, 2022.

 MIT Deep Learning 6.S191 (http://introtodeeplearning.com/)

26

