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CHAPTER 6 

HYPERPARAMETER TUNING, BATCH 

NORMALIZATION AND PROGRAMMING 

FRAMEWORKS 
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Tuning process 
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 We need to tune our hyperparameters to get the best out of them. 

 Important hyperparameters are : 

i. Learning rate (𝛼). 

ii. Momentum beta (𝛽). 

iii. Mini-batch size. 

iv. Number of hidden units. 

v. Number of layers. 

vi. Learning rate decay. 

vii. Regularization lambda. 

viii. Activation functions. 

ix. Adam beta1 & beta2 . 

 Its hard to decide which hyperparameter is the most important in a problem. It 

depends on your problem. 



Try random values: Don’t use a grid 
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 One of the ways to tune is to sample a grid with N hyperparameter settings and 

then try all settings combinations on your problem. 

 PROBLEM: One iteration takes a long time ==> NOT AS IMPORTANT. 

 SOLUTION: Try random values: don't use a grid. 
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Coarse to fine 
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 You can use Coarse to fine sampling scheme : 
 When you find some hyperparameters values that give you a better performance : zoom into a smaller 

region around these values and sample more densely within this space. 

 These methods can be automated. 
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Picking hyperparameters at random 
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𝒏,𝒍- = 𝟓𝟎,⋯ , 𝟏𝟎𝟎 

 

 

 

#layers :  𝑳 =  𝟐,⋯ , 𝟓 

𝟐, 𝟑, 𝟒, 𝟓 

 

𝟓𝟎 𝟏𝟎𝟎 

× × × × × × × × × × × × 



Appropriate scale for hyperparameters 
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𝜶 = 𝟎. 𝟎𝟎𝟎𝟏,⋯ , 𝟏 

 

 
𝟎. 𝟎𝟎𝟎𝟏 𝟏 

× × × × × × × × × × × × 

𝟎. 𝟎𝟎𝟎𝟏 𝟏 

× × × × × × × × × × × × × × × × × 

𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟏 𝟎. 𝟏 



Using an appropriate scale to pick hyperparameters 
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 Let's say you have a specific range for a hyperparameter from "a" to "b". It's better 

to search for the right ones using the logarithmic scale rather than in linear scale: 

 

 

 

 

 

 

 It uniformly samples values in log scale from [a,b]. 

Calculate: a_log = log(a) # e.g. a = 0.0001 then a_log = -4 

Calculate: b_log = log(b) # e.g. b = 1 then b_log = 0 

Then: 

r = (a_log - b_log) * np.random.rand() + b_log 

# In the example the range would be from [-4, 0] because rand range [0,1)  

result = 10^r 



Hyperparameters for exponentially weighted averages 
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 If we want to use the last method on exploring on the "momentum beta": 

o Beta (𝛽) best range is from 0.9 to 0.999. 

o You should search for 1 - beta in range 0.001 to 0.1 (1 - 0.9 and 1 - 0.999) and then use  

a = 0.001 and b = 0.1 

o Then: 

a_log = -3 

b_log = -1 

r = (a_log - b_log) * np.random.rand() + b_log 

beta = 1 - 10^r   # because 1 - beta = 10^r 



Re-test hyperparameters occasionally 
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 NLP, Vision, Speech, Ads, logistics, …. 

 Intuitions do get stale.  

 Re-evaluate occasionally. 

 

 Intuitions about hyperparameter 

settings from one application area may 

or may not transfer to a different one. 



Hyperparameters tuning in practice: Pandas vs. Caviar 
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 If you don't have much computational resources you can use the "babysitting model": 
o Day 0 you might initialize your parameter as random and then start training. 

o Then you watch your learning curve gradually decrease over the day. 

o And each day you nudge your parameters a little during training. 

o Called panda approach. 

 If you have enough computational resources, you can run some models in parallel and at 

the end of the day(s) you check the results. 
o Called Caviar approach. 

Panda Caviar 



Batch Normalization 
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 Batch norm is one of the most important ideas in the rise of deep learning (*). 

 Batch Normalization speeds up learning. 

 Before we normalized input by subtracting the mean and dividing by variance. This 

helped a lot for the shape of the cost function and for reaching the minimum point 

faster. 

 The question is: for any hidden layer can we normalize 𝐴,𝑙- to train 𝑊,𝑙-, 𝑏,𝑙- 
faster? This is what batch normalization is about. 

(*) Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate 
shift." International conference on machine learning. ICML, 2015. 

𝜇 =
1

𝑚
 𝑥(𝑖)

𝑖
 

𝑋 = 𝑋 − 𝜇 

𝜎2 =
1

𝑚
 𝑥(𝑖)2

𝑖
 

𝑋 = 𝑋 𝜎2  



Implementing Batch Norm 
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Given 𝑍,𝑙- = 𝑧 1 , ⋯ , 𝑧 𝑚 , 𝑖 =  1 𝑡𝑜 𝑚 (for each input) 

 Compute the mean: 𝜇 =
1

𝑚
 𝑧(𝑖)𝑖  

 Compute the variance: 𝜎2 =
1

𝑚
 𝑧(𝑖) − 𝜇

2
𝑖  

 𝑧𝑛𝑜𝑟𝑚
(𝑖)

=
𝑧(𝑖)−𝜇

𝜎2+𝜀
 (add 𝜀 epsilon for numerical stability if 𝜎2 =  0) 

o Forcing the inputs to a distribution with zero mean and variance of 1. 

 𝑧 (𝑖) = 𝛾𝑧𝑛𝑜𝑟𝑚
(𝑖)

+ 𝛽 

o To make inputs belong to other distribution (with other mean and variance). 

o 𝛾 (gamma) and 𝛽 (beta) are learnable parameters of the model. 

o Making the NN learn the distribution of the outputs. 

o Note: if 𝛾 = 𝜎2 + 𝜀 and 𝛽 = 𝜇 then 𝑧 (𝑖) = 𝑧(𝑖) 



Adding Batch Norm to a network 
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 The NN parameters will be: 

 

 

 

 

 Parameters:  

 

 

 

 If you are using a deep learning framework, you should not implement batch norm 

yourself. For example, in Tensorflow you can add this line: 
tf.nn.batch-normalization() 

𝑥1 

𝑥2 𝑦  

𝑥3 

𝑋 𝑍,1- 𝑍 ,1- 
𝑊,1-, 𝑏,1- 𝛾,1-, 𝛽,1- 

𝑎,1- = 𝑔,1- 𝑍 ,1-  
𝑊,2-, 𝑏,2- 

𝑍,2- 
𝛾,2-, 𝛽,2- 

⋯ 
Bach Norm (BN) Bach Norm (BN) 

𝑊,1-, 𝑏,1- ,𝑊,2-,𝑏,2-, ⋯ ,𝑊,𝐿-, 𝑏,𝐿- 

𝛾,1-, 𝛽,1- , 𝛾,2-,𝛽,2-, ⋯ , 𝛾,𝐿-, 𝛽,𝐿-   
Back-prop: 

𝛽,𝑙- = 𝛽,𝑙- − 𝛼𝑑𝛽,𝑙- 



Working with mini-batches 
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 Batch normalization is usually applied with mini-batches. 

 

 

 

 

 

 

 If we are using batch normalization, parameters 𝑏,1-, ⋯ , 𝑏,𝐿- doesn't count because 

they will be eliminated after mean subtraction step because taking the mean of a 

constant 𝑏,𝑙- will eliminate the 𝑏,𝑙-. 
 So if you are using batch normalization, you can remove 𝑏,𝑙- or make it always 

zero. 

 So the parameters will be 𝑊,𝑙- , 𝛽,𝑙- , and 𝛾,𝑙- . 

 Shapes: 
 𝑍,𝑙- ∶  (𝑛,𝑙-, 1) 
 𝛽,𝑙- ∶  (𝑛,𝑙-, 1) 
 𝛾,𝑙- ∶  (𝑛,𝑙-, 1) 

𝑋*1+ 𝑍,1- 𝑍 ,1- 
𝑊,1-, 𝑏,1- 𝛾,1-, 𝛽,1- 

𝑎,1- = 𝑔,1- 𝑍 ,1-  
𝑊,2-, 𝑏,2- 

𝑍,2- ⋯ 
BN BN 

𝑋*2+ 𝑍,1- 𝑍 ,1- 
𝑊,1-, 𝑏,1- 𝛾,1-, 𝛽,1- 

⋯ 
BN 

𝑋*3+ ⋯ 
𝑊,1-, 𝑏,1- 



Implementing gradient descent 
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For t = 1 … numMiniBatches 

   1) Compute forwardprop on 𝑋*𝑡+ 

        In each hidden layer 𝑙, use BN to replace 𝑍,𝑙- with  𝑍 ,𝑙- 

   2) Use backprop to compute 𝑑𝑊,𝑙-, 𝑑𝑏,𝑙-, 𝑑𝛽,𝑙-, 𝑑𝛾,𝑙- 

   3) Update parameters:  

𝑊,𝑙- = 𝑊,𝑙- − 𝛼𝑑𝑊,𝑙-

𝑏,𝑙- = 𝑏,𝑙- − 𝛼𝑑𝑏,𝑙-

𝛽,𝑙- = 𝛽,𝑙- − 𝛼𝑑𝛽,𝑙-

𝛾,𝑙- = 𝛾,𝑙- − 𝛼𝑑𝛾,𝑙-

 

 Works with momentum, RMSprop, Adam. 



Why does Batch normalization work? 
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 The first reason is the same reason as why we normalize 𝑋. 

 The second reason is that batch normalization reduces the 

problem of input values changing (shifting). 

 Batch normalization does some regularization. 



Batch Norm as regularization 
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 Batch normalization does some regularization: 

o Each mini batch is scaled by the mean/variance computed of that mini-batch. 

o This adds some noise to the values 𝑍,𝑙- within that mini batch. So similar to dropout it 

adds some noise to each hidden layer's activations. 

o This has a slight regularization effect. 

o Using bigger size of the mini-batch you are reducing noise and therefore regularization 

effect. 

o Don't rely on batch normalization as a regularization. It's intended for normalization of 

hidden units, activations and therefore speeding up learning. For regularization use other 

regularization techniques (L2 or dropout). 

 



Multi-class classification (Softmax regression) 

19 

 Recognizing cats, dogs, and baby chicks 

3 1 2 0 3 2 0 1 

𝑪 = # 𝑪𝒍𝒂𝒔𝒔𝒆𝒔 = 𝟒   (𝟎, 𝟏, 𝟐, 𝟑) 

𝑃(𝑜𝑡ℎ𝑒𝑟|𝑋) 

𝑃(𝑐𝑎𝑡|𝑋) 

𝑃(𝑑𝑜𝑔|𝑋) 

𝑃(𝑏𝑎𝑏𝑦 𝑐ℎ𝑖𝑐𝑘𝑠|𝑋) 

𝒚   𝒉𝒂𝒔 𝒂 𝒔𝒊𝒛𝒆 𝒐𝒇 (𝟏, 𝟒) 



Softmax layer 
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𝑍,𝐿- = 𝑊,𝐿-𝑎,𝐿−1- + 𝑏,𝐿-  ⇒  (4,1) 

Activation function: 

𝑡 = 𝑒 𝑍,𝐿-
 

𝑦 = 𝑎,𝐿- =
𝑒𝑍

,𝐿-

 𝑡𝑗
4
𝑗=1

, 𝑎𝑖
,𝐿-

=
𝑡𝑖

 𝑡𝑗
4
𝑗=1

 

𝑎,𝐿- = 𝑔,𝐿- 𝑧,𝐿-  

𝑍,𝐿- =

5
2
−1
3

 

𝑡 =

𝑒5

𝑒2

𝑒−1

𝑒3

=

148.4
7.4
0.4
20.1

 , 𝑡𝑗

4

𝑗=1

= 176.3 

𝑎,𝐿- =
𝑡

176.3
 

=

148.4

176.3
7.4

176.3
 

0.4

176.3
 

20.1

176.3
 

=

0.842
0.042
0.002
0.114

 

0 

1 

2 

3 



Softmax examples 
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𝑥1 

𝑥2 

𝑥1 

𝑥2 

𝑥1 

𝑥2 

𝑥1 

𝑥2 

𝑥1 

𝑥2 

𝑥1 

𝑥2 



Understanding softmax 
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𝑍,𝐿- =

5
2
−1
3

        𝑡 =

𝑒5

𝑒2

𝑒−1

𝑒3

      #𝑪𝒍𝒂𝒔𝒆𝒆𝒔 𝑪 = 𝟒 

𝑎,𝐿- = 𝑔,𝐿- 𝑍,𝐿- =

𝑒5 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3 

𝑒2 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3 

𝑒−1 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3 

𝑒3 𝑒5 + 𝑒2 + 𝑒−1 + 𝑒3 

=

0.842
0.042
0.002
0.114

 

Softmax regression generalizes logistic regression to C classes 

If C = 2 Softmax reduces to logistic regression. 

 

4,1  

1
0
0
0

 

Softmax  Hard max  



Loss function 
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𝑦(𝑖) =

𝑦1
𝑦2
𝑦3
𝑦4

=

0
1
0
0

,   𝑎,𝐿-(𝑖) = 𝑦 (𝑖) =

0.3
0.2
0.1
0.4

    #𝑪𝒍𝒂𝒔𝒆𝒆𝒔 𝑪 = 𝟒 

ℒ 𝑦 , 𝑦 = − 𝑦𝑗𝑙𝑜𝑔 𝑦 𝑗

𝐶

𝑗=1

    𝐽 𝑊 1 , 𝑏 1 , … =
1

𝑚
 ℒ 𝑦 (𝑖), 𝑦(𝑖) 

𝑚

𝑖=1

 

Example: ℒ 𝑦 , 𝑦 = −𝑦2𝑙𝑜𝑔 𝑦 2 = −𝑙𝑜𝑔 𝑦 2  
Small ℒ 𝑦 , 𝑦 ⇒ make 𝑦 2 big. 
 
Vectorization: 

𝑌 =  𝑦(1), 𝑦(2), ⋯ , 𝑦(𝑚)              𝑌  =  𝑦 (1), 𝑦 (2), ⋯ , 𝑦 (𝑚)  

 

=

0 0 1 .
1 0 0 .
0
0

1
0

0
0

.

.

                              =

0.3 . . .
0.2 . . .
0.1
0.4

.

.
.
.

.

.

 

4,𝑚  

4,1  

4,𝑚  



Deep learning frameworks 
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 It's not practical to implement everything from scratch. Our numpy 

implementations were to know how NN works. 

 There are many good deep learning frameworks. 

 Deep learning is now in the phase of doing something with the frameworks 

and not from scratch to keep on going. 

 Here are some of the leading deep learning frameworks: 

 
 

 

 

 

 

 Choosing deep learning frameworks 

o Ease of programming (development and deployment) 

o Running speed 

o Truly open (open source with good governance) 

 

Caffe/Caffe2 CNTK DL4J 

Keras Torch mxnet 

PaddlePaddle TensorFlow Theano 



TensorFlow 
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 In this section we will learn the basic structure of TensorFlow programs. 

 

 Demo 1: Optmization of a simple quadratic equation. 
 

 Implement a minimization function. For example the function: 

𝑱(𝒘)  =  𝒘𝟐 − 𝟏𝟐𝒘+ 𝟑𝟔 

 The result should be 𝒘 = 𝟔 as the function is 𝒘− 𝟔 𝟐 = 𝟎 

 

 Demo 2: Classification of digit images 
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