Deep learning

Dr. Aissa Boulmerka
a.boulmerka@centre-univ-mila.dz

2023-2024

CHAPTER 6
HYPERPARAMETER TUNING, BATCH
NORMALIZATION AND PROGRAMMING
FRAMEWORKS

Tuning process

= \We need to tune our hyperparameters to get the best out of them.

» |mportant hyperparameters are :
I. Learning rate ().
. Momentum beta (5).
ii. Mini-batch size.
iIv. Number of hidden units.
v. Number of layers.
vi. Learning rate decay.
vii. Regularization lambda.
viii. Activation functions.
IX. Adam betal & beta? .

= |ts hard to decide which hyperparameter is the most important in a problem. It

depends on your problem.

Try random values: Don’t use a grid

Hyperparameter 1

™
0%
Hyperparameter 2 &z;&
[) [) [) [) [] [] Qé&
Hyperparameter 2 QS
’ ’ * * * * ~— [[[[[) [)
ko
° ° ° ° ° ° (D)
E ° ° ° ° ° °
o
) ’ ’) ’ ’ § (] (] (] . . .
3
>
I [[[[) [) [)
GRID SEARCH e e o e e e

One of the ways to tune is to sample a grid with N hyperparameter settings and
then try all settings combinations on your problem.

PROBLEM: One iteration takes a long time ==> NOT AS IMPORTANT.
SOLUTION: Try random values: don't use a grid.

Coarse to fine

Hyperparameter 2

) e o))))
)))) e o o

—

S

S

D e o e o) e o

&

(44}

Eo)) e o e o cee e

o

| —-—

(¢b] e o e e o

o

> () e o o |eo o o0 o

I e o e o o e o
e o o o o | o oo\/ te o e e
e o0 o o o o o) e o e o696 o

= You can use Coarse to fine sampling scheme :

= When you find some hyperparameters values that give you a better performance : zoom into a smaller
region around these values and sample more densely within this space.

= These methods can be automated.

Picking hyperparameters at random

L X X X X X X X X X XX X

=
QD
<
D
»
%
b~
1
N
) |

100

Appropriate scale for hyperparameters

a=0.0001,--,1

| XX X X X XXXX | XX X XX[| XXX |
0.0001 0.001 0.01 0.1 1

Using an appropriate scale to pick hyperparameters

= Let's say you have a specific range for a hyperparameter from "a" to "b". It's better

to search for the right ones using the logarithmic scale rather than in linear scale:

Calculate: a_log = log(a) # e.g. a =0.0001 then a_log = -4
Calculate: b_log =log(b) #e.g. b=1then b log=0
Then:

r=(a_log - b_log) * np.random.rand() + b_log

In the example the range would be from [-4, 0] because rand range [0,1)
result = 10"r

= |t uniformly samples values in log scale from [a,b].

Hyperparameters for exponentially weighted averages

= |f we want to use the last method on exploring on the "momentum beta":
o Beta (f) best range is from 0.9 to 0.999.
o You should search for 1 - beta in range 0.001 t0 0.1 (1 - 0.9 and 1 - 0.999) and then use
a=0.00landb=0.1

o Then:
a_log=-3
b log=-1

r=(a_log - b_log) * np.random.rand() + b_log
beta=1-10"r # because 1 - beta = 10"r

Re-test hyperparameters occasionally

Idea

v

= NLP, Vision, Speech, Ads, logistics,
| Intuitions do get stale.
Code

. Re-evaluate occasionally.
Experiment ;

Intuitions about hyperparameter
settings from one application area may
or may not transfer to a different one.

10

Hyperparameters tuning in practice: Pandas vs. Caviar

A

Caviar

Panda

= If you don't have much computational resources you can use the "babysitting model":
Day 0 you might initialize your parameter as random and then start training.

Then you watch your learning curve gradually decrease over the day.

And each day you nudge your parameters a little during training.

Called panda approach.

= If you have enough computational resources, you can run some models in parallel and at
the end of the day(s) you check the results.

o Called Caviar approach.

O
O
O
O

11

Batch Normalization

1 .
X1 \v/ .W .\‘ O ii?;lx@
X ata .A’l .A‘. A~) U |
SROROY T
A.‘.‘. X = X/o?

= Batch norm is one of the most important ideas in the rise of deep learning .

= Batch Normalization speeds up learning.

= Before we normalized input by subtracting the mean and dividing by variance. This
helped a lot for the shape of the cost function and for reaching the minimum point
faster.

= The question is: for any hidden layer can we normalize AU to train Wi, plil
faster? This is what batch normalization is about.

(*) loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate

shift." International conference on machine learning. ICML, 2015.
12

Implementing Batch Norm

Given ZI = [z, ... z(M] i = 1 to m (for each input)
= Compute the mean: u = %Ziz(”

= Compute the variance: 62 = %Zi(z(” —n)’

. O 20

norm Vol+e

o Forcing the inputs to a distribution with zero mean and variance of 1.

(add & epsilon for numerical stability if 62 = 0)

(D) — 4,0
. Z(l) = YZnorm + :8
o To make inputs belong to other distribution (with other mean and variance).
o Y (gamma) and g (beta) are learnable parameters of the model.

o Making the NN learn the distribution of the outputs.
o Note:ify = Vo2 +eand f = pthen 20 = zO

13

Adding Batch Norm to a network

=
N
<

The NN parameters will be:

wil, ptil yl, gl w2l pl2] yl2l gl

7I1] 7 — g1l = glu(z01) — 712]

Bach Norm (BN) Bach Norm (BN)

Parameters:
wiil plil ,W[Z] pl2] . W[L] plL] Back-prop:
y[l],ﬁ[l 3[2 ﬁ[L] ﬁ[l] — ﬁ[l] — adﬁ[l]

If you are using a deep learning framework, you should not implement batch norm

yourself. For example, in Tensorflow you can add this line:
tf.nn.batch-normalization|()
14

Working with mini-batches

Batch normalization is usually applied with mini-batches.

wiil pli] [1] pl1] W[Z], pl2]
X —— 7[1] 14 E;f 7111 — qlil =g[1](Z[1]) — 721 ...
2 wiil plil ")/[1],,3[1]]
X —> 7 > I —> .
witl pil BN

xB —— > ...

If we are using batch normalization, parameters b1, --- bIL] doesn't count because
they will be eliminated after mean subtraction step because taking the mean of a
constant bl will eliminate the bl

So if you are using batch normalization, you can remove blY or make it always
Zero.

So the parameters will be W | gld and yL .

Shapes:
[Z[l] . (n[l]’ 1)
= gl (1)
[y[l] : (n[l], 1)

15

Implementing gradient descent

For t=1 ... numMiniBatches
1) Compute forwardprop on Xt}
In each hidden layer [, use BN to replace Z!! with ZU
2) Use backprop to compute dW 1, dpll, dpltl gyl

3) Update parameters:

(Wl = wlt — gaw !
pltl = plll — gdpli
gl = plil — gqplll

\ y[l] — y[l] —_ ad]/[l]

A

= Works with momentum, RMSprop, Adam.

16

Why does Batch normalization work?

= The first reason is the same reason as why we normalize X.

= The second reason is that batch normalization reduces the

problem of input values changing (shifting).

= Batch normalization does some regularization.

17

Batch Norm as regularization

= Batch normalization does some regularization:

®

®

Each mini batch is scaled by the mean/variance computed of that mini-batch.

This adds some noise to the values Z[4 within that mini batch. So similar to dropout it
adds some noise to each hidden layer's activations.

This has a slight regularization effect.

Using bigger size of the mini-batch you are reducing noise and therefore regularization
effect.

Don't rely on batch normalization as a regularization. It's intended for normalization of

hidden units, activations and therefore speeding up learning. For regularization use other

regularization techniques (L2 or dropout).

18

Multi-class classification (Softmax regression)

= Recognizing cats, dogs, and baby chicks

P(other|X)
O O
O |0 O o |10 [O P(cat|X)
X—0 »8 »8 " OF—O— 1O
O O O O
O O P(dog|X)

y has asize of (1,4)

19

Softmax layer

X—

OO0

7L — Ll glt-1] 4

Activation function:

t = (2"

)

O O 0
O O O o |O o
O »O »(O »(» O l-®—|-
O O O O O)
O Q
bl = (4,1) 5
711 = _21
| 3]
[e>] [148.4]
G = b I N
tj’ . ?=1tj N e_l N 0.4 ’
23] 1201
t
! = 173

NE

.

A

I
=

1 148.47

176.3
7.4

176.3
0.4

176.3
20.1

1176.3 |

t; =

1

176.3

0.042

0.002

0.842‘
0.114

20

Softmax examples

21

Understanding softmax

(4,1) "~\\ i))
\\‘v 5 e’
2
ZIL = 21 t=|%,| #ClaseesC =4
— e
3
3 - € Softmax Hard max

e>/(e>+e*+e ' +e3)] r10.842]
altl = gl (z[1) = e’/(e® +e*+e”! +e) _ 10.042
e 1/(e>+e?+e1+e3) 0.002

| e3/(e5+e?2 +e 1l +e3)] 10.114]

oo O R

Softmax regression generalizes logistic regression to C classes

If C = 2 Softmax reduces to logistic regression.

22

(41 m) -~\\

y(i) =

V1]

Y2
Y3

| Va |

L_oss function

(4)1) BRAN
0

1
0)
0.

N,
N
AY

v
alll® = 9O =

0.3]
0.2
0.1

0.4

#Clasees C = 4

C m
1 . .
L@, y) = — z yjlog(j;j)](W[l], b[l]’) — Ez L(y(‘),y(‘))
j=1 =1

Example: L(§,y) = —y,log(¥2) = —log(y2)
Small L(¥,y) = make ¥, big.

Vectorization:

Y = [y®,y®, ..., ym]

o oR o

o O O

S OO -

AN

0.3

0.2
0.1

0.4

Y = [y(l),y(Z),...,y(m)]

-~ (4,m)

U

<’
23

Deep learning frameworks

It's not practical to implement everything from scratch. Our numpy
implementations were to know how NN works.

There are many good deep learning frameworks.

Deep learning is now in the phase of doing something with the frameworks
and not from scratch to keep on going.

Here are some of the leading deep learning frameworks:

Caffe/Caffe2 CNTK DL4J
Keras Torch mxnet
PaddlePaddle TensorFlow Theano

Choosing deep learning frameworks
o Ease of programming (development and deployment)
o Running speed
o Truly open (open source with good governance)

24

TensorFlow

In this section we will learn the basic structure of TensorFlow programs.
Demo 1: Optmization of a simple quadratic equation.

» |Implement a minimization function. For example the function:
Jw) = w?—12w + 36
= The result should be w = 6 as the function is (w — 6)% = 0

Demo 2: Classification of digit images

‘-f—)4 -Z—)Z ‘3—)3
‘/—>4 9—>9 0—>G}
S—)S ‘\—)7 I—)l
Q—>9 0—>@ 3—>3
{—)6 7—>7 Lf—>4

25

References

Andrew Ng. Deep learning. Coursera.
Geoffrey Hinton. Neural Networks for Machine Learning.

Kevin P. Murphy. Probabilistic Machine Learning An Introduction. MIT
Press, 2022.

MIT Deep Learning 6.5191 (http://introtodeeplearning.com/)

