
Deep learning

Dr. Aissa Boulmerka

a.boulmerka@centre-univ-mila.dz

2023-2024

1

CHAPTER 5

OPTIMIZATION ALGORITHMS

2

Mini-batch gradient descent

3

• Training NN with a large data is slow. So to find an optimization algorithm

that runs faster is a good idea.

• Suppose we have 𝑚 = 5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 . To train this data it will take a huge

processing time for one step.

– because 5 million won't fit in the memory at once we need other processing to make such

a thing.

• You can make a faster algorithm to make gradient descent process some of

your items even before you finish the 5 million items.

• In Batch gradient descent we run the gradient descent on the whole dataset.

• While in Mini-Batch gradient descent we run the gradient descent on the

mini datasets.

Mini-batch gradient descent

4

 Suppose we have split m to mini batches of size 1000.

𝑋 = 𝑥(1)𝑥(2)𝑥(3) ⋯ 𝑥 1000 |𝑥 1001 ⋯ 𝑥 2000 |⋯ |⋯𝑥 𝑚

(𝑛𝑥, 𝑚) 𝑋 1 (𝑛𝑥, 1000) 𝑋 2 (𝑛𝑥, 1000) 𝑋 5000 (𝑛𝑥, 1000)

𝑌 = 𝑦(1)𝑦(2)𝑦(3) ⋯𝑦 1000 |𝑦 1001 ⋯ 𝑦 2000 |⋯ |⋯𝑦 𝑚

(1,𝑚) 𝑌 1 (1,1000) 𝑌 2 (1,1000) 𝑌 5000 (1,1000)

If 𝑚 = 5 000 000:
5000 mini-batches of 1000 each

mini-batch t : 𝑋 𝑡 , 𝑌 𝑡

 We similarly split 𝑋 & 𝑌 :

Mini-batch gradient descent

5

 Mini-Batch algorithm pseudo code:
Repeat

 for t = 1,…,5000 # this is called an epoch

 forward prop on 𝑋 𝑡

 𝑍,1- = 𝑊 1 𝑋 + 𝑏,1-

 𝐴,1- = 𝑔,1- 𝑍,1-

 ⋮

 𝐴,𝑙- = 𝑔,𝑙- 𝑍,𝑙-

 compute cost 𝐽*𝑡+ =
1

1000
 ℒ 𝑦 𝑖 , 𝑦 𝑖1000

𝑖=1 +
𝜆

2.1000
𝑤,𝑙-

2

2

 backward propagation to compute gradients

 𝑤,𝑙- = 𝑤,𝑙- − 𝛼𝑑𝑤,𝑙-, 𝑏,𝑙- = 𝑏,𝑙- − 𝛼𝑑𝑏,𝑙-

 The code inside an epoch should be vectorized.

 Mini-batch gradient descent works much faster in the large datasets.

Understanding mini-batch gradient descent

6

 In mini-batch algorithm, the cost won't go down with each step as it does in

batch algorithm.

 It could contain some ups and downs but generally it has to go down (unlike

the batch gradient descent where cost function descreases on each iteration)..

𝑱
𝑱*𝒕+

Choosing your mini-batch size

7

 If mini-batch size = 𝒎 ⟹ Batch gradient descent

 If mini-batch size = 𝟏 ⟹ Stochastic gradient descent (SGD)

 If 𝟏 ≤ mini-batch size ≤ 𝒎 ⟹ Mini-batch gradient descent

Stochastic gradient
descent (SGD)

Mini-batch
gradient descent

Batch gradient
descent

 too noisy
regarding cost
minimization

 won't ever
converge

 lose speedup
from
vectorization

 faster learning
 make progress

without waiting
to process the
entire training
set

 too long per
iteration
(epoch)

Guidelines for choosing mini-batch size

8

I. If small training set (< 2000 examples): use batch gradient descent.

II. It has to be a power of 2 (because of the way computer memory is layed

out and accessed, sometimes your code runs faster if your mini-batch size

is a power of 2): 64, 128, 256, 512, 1024, ...

III. Make sure that mini-batch fits in CPU/GPU memory.

Note: Mini-batch size is a hyperparameter.

Exponentially weighted averages

9

𝜃1 = 40°𝐹

𝜃2 = 49°𝐹

𝜃3 = 45°𝐹

⋮
𝜃180 = 60°𝐹

𝜃181 = 56°𝐹

⋮

Now lets compute the Exponentially weighted averages:

𝑉0 = 0

𝑉1 = 0.9𝑉0 + 0.1𝜃1

𝑉2 = 0.9𝑉1 + 0.1𝜃2

𝑉3 = 0.9𝑉2 + 0.1𝜃3

⋮
𝑉𝑡 = 0.9𝑉𝑡−1 + 0.1𝜃𝑡

Exponentially weighted averages

10

 General equation:

𝑉𝑡 = 𝛽𝑉𝑡−1 + 1 − 𝛽 𝜃𝑡

 If we plot this it will represent averages over

≈
1

1−𝛽
 entries:

 𝛽 = 0.9 will average last 10 entries

 𝛽 = 0.98 will average last 50 entries

 𝛽 = 0.5 will average last 2 entries

 Best beta average for our case is between 0.9

and 0.98

Understanding exponentially weighted averages

11

 Intuition: exponentially weighted averages can give different weights to recent
data points (theta) based on value of beta. If beta is high (around 0.9), it smoothens
out the averages of skewed data points (oscillations w.r.t. Gradient descent
terminology). So this reduces oscillations in gradient descent and hence makes
faster and smoother path towards minima.

𝑉𝑡 = 𝛽𝑉𝑡−1 + 1 − 𝛽 𝜃𝑡

Bias correction in exponentially weighted averages

12

 The bias correction helps make the exponentially weighted averages more accurate.

 Because 𝑉0 = 0, the bias of the weighted averages is shifted and the accuracy

suffers at the start.

 To solve the bias issue we have to use this equation:

𝑉𝑡 =
𝛽

1 − 𝛽𝑡 𝑉𝑡−1 +
1 − 𝛽

1 − 𝛽𝑡 𝜃𝑡

 As 𝑡 becomes larger the 1 − 𝛽𝑡 becomes close to 1

Bias correction

13

days
te

m
p
er

at
u
re

𝑉𝑡 = 𝛽𝑉𝑡−1 + 1 − 𝛽 𝜃𝑡

𝑉0 = 0

𝑉1 = 0.98𝑉0 + 0.02𝜃1 = 0.02𝜃1

𝑉2 = 0.98𝑉1 + 0.02𝜃2

𝑉2 = 0.98 ∗ 0.02𝜃1 + 0.02𝜃2

𝑉2 = 0.0196𝜃1 + 0.02𝜃2

𝑉𝑡

1 − 𝛽𝑡

𝑡 = 2: 1 − 𝛽𝑡 = 1 − 0.982 = 0.0396
𝑉2

0.0396
=

0.0196𝜃1 + 0.02𝜃2

0.0396

𝑉2

0.0396
= 0.4949𝜃1 + 0.5051𝜃2

𝛽 = 0.98

Gradient descent with momentum

14

 The momentum algorithm almost always works faster than standard gradient descent.

 The simple idea is to calculate the exponentially weighted averages for your gradients
and then update your weights with the new values.

𝑣𝑑𝑊 = 0, 𝑣𝑑𝑏 = 0
on iteration t:

 # can be mini-batch or batch gradient descent

 compute 𝑑𝑤, 𝑑𝑏 on current mini-batch
 𝑣𝑑𝑊 = 𝛽 ∗ 𝑣𝑑𝑊 + (1 − 𝛽) ∗ 𝑑𝑊

 𝑣𝑑𝑏 = 𝛽 ∗ 𝑣𝑑𝑏 + (1 − 𝛽) ∗ 𝑑𝑏
 𝑊 = 𝑊 − 𝛼 ∗ 𝑣𝑑𝑊

 𝑏 = 𝑏 − 𝛼 ∗ 𝑣𝑑𝑏

𝛼 ∶ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

Implementation details

15

 Momentum helps the cost function to go to the minimum point in a more

fast and consistent way.

 beta is another hyperparameter. 𝛽 = 0.9 is very common and works very

well in most cases.

 In practice people don't bother implementing bias correction.

RMSprop (Root Mean Squered)

16

 Stands for Root Mean Square prop.

 This algorithm speeds up the gradient descent.

 Pseudo code:

𝑠𝑑𝑊 = 0, 𝑠𝑑𝑏 = 0
on iteration t:

 # can be mini-batch or batch gradient descent

 compute 𝑑𝑤, 𝑑𝑏 on current mini-batch
 𝑠𝑑𝑊 = (𝛽 ∗ 𝑠𝑑𝑊) + (1 − 𝛽) ∗ 𝑑𝑊^2 #squaring is element-wise
 𝑠𝑑𝑏 = (𝛽 ∗ 𝑠𝑑𝑏) + (1 − 𝛽) ∗ 𝑑𝑏^2 #squaring is element-wise
 𝑊 = 𝑊 − 𝛼 ∗ 𝑑𝑊 / 𝑠𝑞𝑟𝑡(𝑠𝑑𝑊)
 𝑏 = 𝐵 − 𝛼 ∗ 𝑑𝑏 / 𝑠𝑞𝑟𝑡(𝑠𝑑𝑏)

𝛼 ∶ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

Adam optimization algorithm

17

𝑣𝑑𝑊 = 0, 𝑣𝑑𝑊 = 0, 𝑠𝑑𝑊 = 0, 𝑠𝑑𝑏 = 0
on iteration t:

can be mini-batch or batch gradient descent

compute 𝑑𝑤, 𝑑𝑏 on current mini-batch
𝑣𝑑𝑊 = 𝛽1 ∗ 𝑣𝑑𝑊 + 1 − 𝛽1 ∗ 𝑑𝑊 # momentum

𝑣𝑑𝑏 = 𝛽1 ∗ 𝑣𝑑𝑏 + 1 − 𝛽1 ∗ 𝑑𝑏 # momentum
𝑠𝑑𝑊 = 𝛽2 ∗ 𝑠𝑑𝑊 + 1 − 𝛽2 ∗ 𝑑𝑊2 # RMSprop

𝑠𝑑𝑏 = 𝛽2 ∗ 𝑠𝑑𝑏 + 1 − 𝛽2 ∗ 𝑑𝑏2 # RMSprop

𝑣𝑑𝑊 = 𝑣𝑑𝑊 1 − 𝛽1
𝑡 # fixing bias

𝑣𝑑𝑏 = 𝑣𝑑𝑏 1 − 𝛽1
𝑡 # fixing bias

𝑠𝑑𝑊 = 𝑠𝑑𝑊 1 − 𝛽2
𝑡 # fixing bias

𝑠𝑑𝑏 = 𝑠𝑑𝑏 1 − 𝛽2
𝑡 # fixing bias

𝑊 = 𝑊 − 𝛼 ∗ 𝑣𝑑𝑊 𝑠𝑑𝑊 + 𝜀

𝑏 = 𝑏 − 𝛼 ∗ 𝑣𝑑𝑏 𝑠𝑑𝑏 + 𝜀

 Stands for Adaptive Moment Estimation.

 Adam optimization and RMSprop are among the optimization algorithms that worked

very well with a lot of NN architectures.

 Adam optimization simply puts RMSprop and momentum together!

𝛼 ∶ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

Hyperparameters for Adam

18

 Learning rate (𝛼): needed to be tuned.

 Parameter of the momentum (𝛽1): 0.9 is recommended by default.

 Parameter of the RMSprop (𝛽2) : 0.999 is recommended by default.

 𝜀: 10−8 is recommended by default.

Learning rate decay

19

 Slowly reduce learning rate.

 As mentioned before mini-batch gradient descent won't reach the optimum point

(converge). But by making the learning rate decay with iterations it will be much closer

to it because the steps (and possible oscillations) near the optimum are smaller.

 One technique equations is:

𝛼 =
1

1 + 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 ∗ 𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚
 ∗ 𝛼0

 epoch_num is over all data (not a single mini-batch).

Other learning rate decay methods

20

 Other learning rate decay methods (continuous):

𝛼 = 0.95𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 ∗ 𝛼0

𝛼 =
𝑘

𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚
∗ 𝛼0 or 𝛼 =

𝑘

𝑡
∗ 𝛼0

 Some people perform learning rate decay discretely - repeatedly decrease after some number

of epochs.

 Some people are making changes to the learning rate manually.

 Decay method or 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 is another hyperparameter .

 Learning rate decay has less priority.

The problem of local optima

21

 The normal local optima is not likely to appear in a deep neural network because data is

usually high dimensional. For point to be a local optima it has to be a local optima for each

of the dimensions which is highly unlikely.

 It's unlikely to get stuck in a bad local optima in high dimensions, it is much more likely to

get to the saddle point rather to the local optima, which is not a problem.

saddle point 𝐽

𝑤1
𝑤2

Problem of plateaus

22

 Plateaus can make learning slow:

 Plateau is a region where the derivative is close to zero for a long time.

 This is where algorithms like momentum, RMSprop or Adam can help.

References

 Andrew Ng. Deep learning. Coursera.

 Geoffrey Hinton. Neural Networks for Machine Learning.

 Kevin P. Murphy. Probabilistic Machine Learning An Introduction. MIT

Press, 2022.

 MIT Deep Learning 6.S191 (http://introtodeeplearning.com/)

23

