Elliptic Curves Work Sheet 02

Exercise 1. Let $E/\mathbb{Q}: y^2 = x^3 + Ax + B$. $A, B \in \mathbb{Z}$ be an (EC) over \mathbb{Q} .

- (1) Suppose $P = (p_1, p_2), Q = (q_1, q_2) \in E(\mathbb{Q})$. Find the rationale points P + Q, 2P, and -P.
- (2) Write \hat{E} the (WF) of E in homogeneous coordinates (i.e. in $\mathbb{P}^2(\mathbb{Q})$).

Exercise 2. Let E/\mathbb{Q} : $y^2 = x^3 + 1$ an (EC) over \mathbb{Q} , and let P = (2, 3).

- (1) Prove that $P \in E/\mathbb{Q}$.
- (2) Calculate in $E(\mathbb{Q})$ the points $nP, n \ge 2$.

Exercise 3. Soit E/\mathbb{F}_{23} : $y^2 = x^3 + x + 1$ an (EC) over \mathbb{F}_{23} .

- (1) Find all the points of $E(\mathbb{F}_{23})$.
- (2) Let P = (9,7), Q = (3,10) be tow points of \mathbb{F}_{23} . Calculate P + Q, 2Q.

Exercise 4. Let \mathbb{F}_{2^4} be the quotient field $\mathbb{F}_2[X]/ < x^4 + x + 1 >$. Suppose every elements of \mathbb{F}_{2^4} is a power of g. And let E/\mathbb{F}_{2^4} be an (EC) given by

$$y^2 + xy = x^3 + g^4x^2 + 1.$$

- (1) Find all the points of $E(\mathbb{F}_{2^4})$.
- (2) Suppose $P = (g^6, g^8), Q = (g^3, g^{13})$, calculate P + Q, and 2P.