- 1. Prove that a subset H of a group G is a subgroup if it is nonempty, finite and closed under the group operation.
- 2. Give an example of a group G and an infinite subset H of G that is closed under the group operation but is not a subgroup of G .
- 3. Let H and K be subgroups of a group G. Prove that $H \cup K$ is a subgroup of G if and only if H is a subgroup of K or K is a subgroup of H.
- 4. Prove that if H and K are subgroups of a group G then so is their intersection $H \cap K$.
- 5. Prove that G cannot have a subgroup H with $|H| = n 1$, where $n = |G| > 2$.
- 6. Show that every subgroup of \mathbb{Z}_n is cyclic.
- 7. If $\phi: G \to H$ is an isomorphism between groups G and H, show that $\phi(0_G) = 0_H$ where 0_G is the additive identity of G and 0_H is the additive identity of H
- 8. Show that all finite cyclic groups are isomorphic to \mathbb{Z}_n .
- 9. Show that all finite cyclic groups are abelian.
- 10. Let G be a group. Let $x \in G$ and $m, n \in \mathbb{Z}$. Prove that if $x^n = 1$ and $x^m = 1$, then $x^d = 1$ where $d = \gcd(m, n)$. Using this result, prove that if $x^m = 1$ for some $m \in \mathbb{Z}$, then the order of x divides m .

1. Given, H is a subset of G such that it is non-empty, finite and closed under group operation \star .

Since H is closed under group operation \star , \star is a valid binary operation over set H.

Associative property follows from the fact that G is a group.

Now, subset H is non-empty.

Hence \exists at least one element in H, call it 'a'.

Now, consider a set B, $B = \{a, a \star a, a \star a, a \star a, ...\}$

Because H is closed under \star , $a \star a \in H$, $a \star a \star a \in H$ and so on.

We see that $B \subseteq H \Rightarrow |B| \leq |H|$

Since, H is finite, the cardinality of B is finite.

That means, $a, a \star a, a \star a \star a, \ldots$ cannot all be distinct. So there exist positive integers i and j such that

$$
\underbrace{a \star a \star \ldots \star a}_{i \text{ times}} = \underbrace{a \star a \star \ldots \star a}_{j \text{ times}}
$$
\n
$$
\Rightarrow \underbrace{a \star a \star \ldots \star a}_{(i-j) \text{ times}} = e
$$

where e is the identity of the group G . The second equality is obtained by multiplying both sides by $a^{-1} \star a^{-1} \star \cdots \star a^{-1}$

 ${j \text{ times}}$

However, $a \star a \star \ldots \star a \in H$ where $k = i - j > 0$ because H is closed under \star . $\overbrace{k \text{ times}}$

This implies that $e \in H$. Since e is the identity of the group G , $a \star e = e \star a = a$ for all $a \in H$.

Now, only thing left to prove is the existence of inverse. Consider any element a in subset H. We need to prove that there exists $b \in H$ such that $a \star b = b \star a = e$

If $a = e$, then a is the inverse of itself. Otherwise, by the argument presented earlier, there exists a positive integer k such that $a \star a \star ... \star a$ $\overbrace{k \text{ times}}$ $= e.$ Let $b = a * a * ... * a$ $k-1$ times .

Then $a * b = b * a = e$. Since $b \in H$, the inverse of every element $a \in H$ exists.

Hence, H is a subgroup of G .

2. Consider the set of integers $\mathbb{Z}=\{...,2,-1,0,1,2,...\}$ under the operation real addition. It is easy to show that $\mathbb Z$ is a group, since addition is associative, closed over integers, 0 is the identity and for $a, -a$ is the inverse.

Let $\mathbb{Z}^+ = \{1, 2, 3, ...\}$. \mathbb{Z}^+ is non-empty, infinite and closed under addition. However, \mathbb{Z}^+ is not a subgroup of $\mathbb Z$ since there is no identity element.

3. Let H and K be subgroups of a group G .

One direction: Given H is a subgroup of K or K is a subgroup of H, we want to prove that $H \cup K$ is a subgroup of G .

 $H \cup K = H$ if K subgroup of H or $H \cup K = K$ if H subgroup of K. Since H and K are subgroups of $G, H \cup K$ is a subgroup of G .

Other direction: Given $H, K, H \cup K$ are subgroups of G, we want to prove that H is a subgroup of K or K is a subgroup of H.

If H is a subgroup of K, we have nothing to prove. Suppose H is not a subgroup of K. Since H is a subgroup of G, this is possible only if H is not a subset of K. So there exists an element $a \in H$ such that $a \notin K$. Now for any $b \in K$, $a * b \in H \cup K$. Now $a * b$ cannot be in K because if it does belong to K then $a * b * b^{-1} = a$ belongs to K, which is a contradiction. So $a * b \in H$ for all $b \in K$. This implies that $a^{-1} * a * b = b$ belongs to H. Thus every element of K belongs to H and K is a subgroup of H.

4. Given H and K are subgroups of G. Consider $H \cap K$. We will use a theorem proved in class that subset H is subgroup of G if $H \neq \phi$ and $x, y \in H \Rightarrow xy^{-1} \in H$.

 $H \cap K \neq \phi$ because the identity is in both subgroups.

Also, for any $x, y \in H \cap K$, $x, y \in H$ and $x, y \in K$

 $\Rightarrow xy^{-1} \in H$ and $xy^{-1} \in K$

$$
\Rightarrow xy^{-1} \in H \cap K
$$

Hence, $H \cap K$ is also a subgroup.

- 5. H is a subgroup of G ,
	- \Rightarrow $O(H)$ | $O(G)$ \Rightarrow $O(H) \mid n$ $(n-1)$ does not divide *n* for $n > 2$. $\Rightarrow O(H) \neq n - 1$

Hence, G cannot have subgroup H such that $|H| = n - 1$.

6. $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ with operation addition modulo n.

Let P be the subgroup of \mathbb{Z}_n . $P \neq \emptyset$, since it is a group. If $P = \{0\}$, the P is cyclic. Suppose $P \neq \{0\}$. By the well-ordering property of the integers, there exists a smallest non-zero element in this subgroup P . Let it be s. We claim that P is cyclic with generator s, i.e. every element of P is a multiple of s modulo n. Suppose this is not true. Then there exists an integer $m \in P$ such that m is not divisible by s. Then we can write $m = qs + r$ where $0 < r < s$ and q is a positive integer representing the quotient. Since $s \in P$, $qs \mod n = s + \cdots + s$ $q \t{ times}$ $modn \in P$. Since m and qs mod n

belong to P, $r = m - qs \mod n \in P$ where $-qs$ is the additive inverse of qs mod n in P. This is a contradiction since $0 < r < s$ and s was chosen to be the smallest non-zero element of P.

Thus, every subgroup of \mathbb{Z}_n is cyclic.

7. $\phi: G \to H$ is an isomorphism between G and H.

$$
\Rightarrow \phi(x *_{g} y) = \phi(x) *_{H} \phi(y), \quad x, y \in G
$$

\n
$$
\Rightarrow \phi(x *_{g} O_{g}) = \phi(x) *_{H} \phi(O_{g})
$$

\n
$$
\Rightarrow \phi(x) = \phi(x) *_{H} \phi(O_{g})
$$

\n
$$
\Phi : G \to H \Rightarrow \text{Let } \phi(x) = h \in H
$$

\n
$$
h = h *_{H} \phi(O_{g})
$$

\nSimilarly, $h = \phi(O_{g}) *_{H} h$ (similar to above)
\n
$$
\Rightarrow O_{H} = \phi(O_{g})
$$

8. All finite cyclic groups are isomorphic to \mathbb{Z}_n .

Proof: Let G be a finite cyclic group. We need a one-to-one and onto function $h: G \to Z_n$ such that $h(x \oplus y) = h(x) * h(y), \forall x, y \in G$.

Let g be the generator element of G and $i \cdot g$ denote $g \oplus g \oplus ... \oplus g$ $\overline{}$ $\overline{\$ $i > 0$. Since G is cyclic, every element in G can be written as $i \cdot g$ for some positive for every integer integer i. Since G is finite there exists a smallest positive integer n such that $n \cdot q = 0$. Define $h: G \to \mathbb{Z}_n$ as $h(i \cdot g) = i$. It can be shown that h is one-to-one and onto. For any $x, y \in G$, $x = i \cdot q$ and $y = j \cdot q$ for some positive integers i and j less than n. Also $x \oplus y = i \cdot g + j \cdot g = (i + j \mod n) \cdot g$. This proves that $h(x \oplus y) = h(x) * h(y)$

- since both sides are equal to $(i + j)$ mod n.
- 9. All finite cyclic groups are isomorphic to \mathbb{Z}_n and \mathbb{Z}_n is abelian. So all finite cyclic groups have to be abelian. Suppose this is not true. Then there exists a finite cyclic group G with elements x and y such that $x \star y \neq y \star x$. Since G is isomorphic to \mathbb{Z}_n , there is a one-to-one and onto function $h: G \to \mathbb{Z}_n$ such that $h(x \star y) = h(x) \star h(y)$. Since \mathbb{Z}_n is abelian, $h(x) \star h(y) = h(y) \star h(x)$. This implies $h(x \star y) = h(y \star x)$. Since h is one-to-one $x \star y = y \star x$. This contradicts our assumption that G is not abelian.
- 10. $x \in G$, $m, n \in \mathbb{Z}$. To prove that if $x^n = 1$ and $x^m = 1$, then $x^d = 1$ where $d = \gcd(m, n)$. Using Bezout's theorem, $d = \gcd(m, n) = \text{am} + \text{bn}$ for some integers $a, b \in \mathbb{Z}$. Then

$$
x^{d} = x^{am + bn} = (x^{m})^{a} (x^{n})^{b} = 1
$$

Let *n* be the order of *x*. This means $x^n = 1$ and $x^i \neq 1$ for $i = 1, 2, ..., n - 1$. Given that $x^m = 1$, $x^{\gcd(m,n)} = 1$. Then $\gcd(m,n) \geq n$ since n is the smallest positive integer such that $x^n = 1$. However, $d = \gcd(m, n) \leq n$, since a divisor of a positive integer is less than or equal to it. Thus $gcd(m, n) = n$ and n divides m.