Algebra And Coding Work Sheet 02

Exercise 1. *Eisenstein's criterion.* Suppose we have the following polynomial with integer coefficients : $Q(X) = \sum_{0 \le k \le n} a_k X^k \in \mathbb{Z}[X]$. If there exists a prime number p such that the following three conditions all apply : p divides each a_k for k < n, p does not divide a_n , and p^2 does not divide a_0 . then Q is irreducible over the rational numbers (over $\mathbb{Q}[X]$.)

- 1. Determine the irreducible polynomials of degree ≤ 4 in $\mathbb{F}_2[X]$.
- 2. Proof that $X^5 + 21X^2 63$ is irreducible in $\mathbb{Z}[X]$.
- 3. Write $X^n 1$ as a product of irreducible polynomials in $\mathbb{Z}[X]$ and in $\mathbb{Q}[X]$ for n = 3, 7.

Exercise 2. Let *K* be a finite field of *q* elements, and *g* is a generator of K^* . Describe how to determine that an element $a \in K^*$ is a square or not in *K*. If yes, show how to calculate a square root of *a* while q = 3[4].

Exercise 3. Determine which polynomials are irreducible or not in $\mathbb{Z}[X]$, in $\mathbb{Q}[X]$, and in $\mathbb{F}_p[X]$.

 $X^4 - 2x^2 + 4$, $X^4 + 1$, $X^4 + 4x^2 + 4$.

Indication : Let g be a generator of G. Set $a = g^n$, $b = g^m$, $ab = g^{n+m}$. One of 3 numbers n, m, m + n must be even and the corresponding power of g is a square number.

Exercise 4. Using $f(x) = x^2 + x - 1$ and $g(x) = x^3 - x + 1$, construct finite fields containing 4, 8, 9, 27 elements. Write down multiplication tables for the fields with 4 and 9 elements and verify that the multiplicative groups of these fields are cyclic.

Exercise 5. Let $f(X) = a_0 X^n + a_1 X^{n-1} + \cdots + a_{n-1} X + a_n \in \mathbb{Z}[X]$. Suppose that f(0) and f(1) are odd integers. Show that f(X) has no integer roots.

Exercise 6. Let \mathbb{F}_q be a finite field. Evaluate the sum and product of the non-zero elements of \mathbb{F}_q .