3. Real functions of one real variable

- 3.1 Notions of function
- 3.1.1 General definitions

Definition 3.1.1 We call digital function on a set D_f any process which, at all element x of D_f , allows to associate at most one element of the set R, then called image of x and denoted f(x). The elements of D_f which have an image by f form the definition set of f, noted D_f .

Example 3.1.1 The function
$$f: x \to \sqrt{x-1}$$
 is defined for all $x \in \mathbb{R}$ such that $x-1 \ge 0$. So $Df = [1, +\infty[$

Definition 3.1.2. We call a graph, or representative curve, of a function f defined on an interval $D_f \subset R$, the set $\Gamma f = \{(x, f(x)) : x \in D_f\}$ formed from the points $(x, f(x)) \in R^2$ of the plan provided with an orthonormal reference (o, \vec{i}, \vec{j})

3.1.2 Bounded functions, monotonic function

Definition 3.1.3 Let $f: D_f \to R$ be a function. We say that:

a. f is **bounded from above** if there is a number M such that for all x from D_f : $f(x) \le K$.

we write: $\exists M \in R, \forall x \in D_f: f(x) \leq M$.

- b. f is **bounded from below** if there is a number m such that for all x from D_f : f(x) . we write: $\exists m \in R, \forall x \in D_f : m \leq f(x)$
- c. f is **bounded** if it is bounded both from above and below. It is to say: $\exists M > 0, \forall x \in D_f: |f(x)| \leq M$.
- d. Function that is not bounded is called unbounded function

Definition 3.1.4. Let $f: D_f \to R$ be a function. We say that:

- a. f is increasing on D_f if: $\forall x, y \in D_f, x < y \Rightarrow f(x) \leq f(y)$.
- b. f is strictly increasing on D_f if: $\forall x, y \in D, x < y \Rightarrow f(x) < f(y)$.
- c. f is decreasing on D_f if: $\forall x, y \in D, x < y \Rightarrow f(x) \ge f(y)$.
- d. f is strictly decreasing on D_f if: $\forall x, y \in D, x < y \Rightarrow f(x) > f(y)$.
- e. f is monotonic (strictly monotonic, respectively) on D_f if f is increasing **or** decreasing (strictly increasing **or** strictly decreasing, resp) on D_f .

Example 3.1.2.

a. Exponential functions exp: $R \rightarrow R$ is strictly increasing.

b. The absolute value function $x \rightarrow |x|$ defined on R is not monotonic

3.1.3 Even, odd, periodic function

Definition 3.1.5. Let I be an interval of R symmetric with respect to 0. Let $f: I \to R$ be a function. We say that:

- a. f is even (زوجية) if $\forall x \in I$: f(-x) = f(x).
- b. f is odd (فردیة) if $\forall x \in I$: f(-x) = -f(x).

Example 3.1.3.

- **a.** The function defined on R by $x \to x^{2n}$ $(n \in N)$ is even.
- **b.** The function defined on R by $x \to x^{2n+1}$ $(n \in N)$ is odd.

Definition 3.1.6. Let $f: R \to R$ be a function and T a real number, T > 0. The function f is called periodic of period T if:

$$\forall x \in R: f(x + T) = f(x).$$

Example 3.1.4. The functions sin and cos are 2π periodic. The tangent function is π periodic.

3.1.4 Algebraic operations on functions

The set of functions from $D \subset R$ to R, is denoted F(D, R).

Definition 3.1.7 Let f and $g \in F(D, R)$ and $\lambda \in R$. We define:

- Sum of two functions $f + g: x \to (f + g)(x) = f(x) + g(x)$.
- For $\lambda \in \mathbb{R}$, we define $\lambda f: x \to (\lambda f)(x) = \lambda f(x)$.
- Product of two functions $fg: x \to (fg)(x) = f(x)g(x)$.

The functions f + g, λf and fg are functions belonging to F(D,R).

Definition 3.1.8 Let f and $g \in F(D,R)$ and $\lambda \in R$. We say that

- $f \le g if: \forall x \in D, f(x) \le g(x).$
- $f < g if: \forall x \in D, f(x) < g(x)$.

Example 3.1.5 Let f and g be two functions defined on]0, 1[by: $f(x) = x, g(x) = x^2$. We have g < f, because $\forall x \in]0, 1[, x^2 < x]$.

3.2 Limit of a function

3.2.1 Finite limit of a function at a point x_0 نهایة منتهیه عند نقطته

Let $f: D_f \to R$ be a function. Let $x_0 \in R$ be a point of D_f or an extremity of D_f .

Definition 3.2.1 Let $\ell \in R$. We say that the function f has a limit ℓ at x_0 if we have:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f, |x - x_0| < \delta \Rightarrow |f(x) - \ell| < \varepsilon$$

We write in this case: $\lim_{x \to x_0} f(x) = \ell$.

Explanation of the definition: We say that f has a (finite) limit ℓ in x_0 if, when $x \to x_0$, $f(x) \to \ell$

Example 3.2.1 Consider the function f(x) = 2x - 1 which is defined on R. At the point x = 1,

Indeed, for all $\varepsilon > 0$, we have $|f(x) - 1| = 2|x - 1| < \varepsilon$, if we have, a fortiori, |x|

$$|x-1|<\frac{\varepsilon}{2}$$

The right choice will then be to take $\delta = \frac{\varepsilon}{2}$

ightarrow Limit to the right \ to the left x_0 النهایـة عـن یمیـن وعن شمـال

Definition 3.2.2

a. We say that the function f admits ℓ as a limit to the right of x_0 , or when x tends towards x_0^+ , if $\forall \varepsilon > 0$, $\exists \delta > 0$, such that: $x_0 < x < x_0 + \delta$, $\rightarrow |f(x) - \ell| \le \varepsilon$

We will write, in this case:

$$\lim_{x \to x_0^+} f(x) = \ell$$

b. We say that the function f admits ℓ as a limit to the left of x_0 , or when x tends towards x_0^- , if for all $\varepsilon > 0$, there exists a $\delta > 0$ such that: $x_0 - \delta < x < x_0$, results $|f(x) - \ell| \le \varepsilon$. We will write, in this case:

$$\lim_{x \to x_0^-} f(x) = \ell$$

Example 3.2.2. The function $x \in R^+ \to \sqrt{x}$ tends to 0 when $x \to 0^+$

Noticed. If the function f admits a limit ℓ to the left of the point x_0 and a limit ℓ

to the right of x_0 , for f to admit a limit at the point x_0 it is necessary and sufficient that.

$$\ell = \ell^{\hat{}}$$

$$\lim_{x \to x_0} f(x) = \ell$$

Example 3.2.3. Consider the function defined by

$$f(x) = \begin{cases} 1, si \ x \ge 0 \\ -1, si \ x < 0 \end{cases}$$

It admits 1 as the limit to the right of 0 and -1 as the limit to the left of 0. But it admits no limit at the point 0.

Uniqueness of the limit

Proposal If f admits a limit at the point x_0 , this limit is unique.

3.2.2 Infinite limit of a function at a point x_0 نهایــة غیر منتهیــة عنــد نقطـة

Let $x_0 \in R$. We will put by definition:

a.
$$\lim_{x \to x_0} f(x) = +\infty$$
 if:
 $\forall A > 0, \exists \delta > 0, such \ as \ |x - x_0| < \delta \Rightarrow f(x) > A.$

b.
$$\lim_{x \to x_0} f(x) = -\infty$$
 if:
$$\forall A > 0, \exists \delta > 0, such \ as \ |x - x_0| < \delta \Rightarrow f(x) < -A.$$

3.2.3 Finite limit of a function at infinity $(x \to \pm \infty)$ نهایــة عنــد المــالانهایـة

a.
$$\lim_{x\to +\infty} f(x) = \ell$$
, if $\forall \varepsilon > 0$, $\exists A > 0$, tel que $x > A \Rightarrow |f(x) - \ell| < \varepsilon$.

We say that f has a (finite) limit ℓ at $+\infty$ if, when x becomes very large, f(x) becomes very close to ℓ

b.
$$\lim_{x\to -\infty} f(x) = \ell$$
, if
$$\forall \varepsilon > 0, \exists A > 0, tel \ que \ x < -A \Rightarrow |f(x) - \ell| < \varepsilon.$$

we say that f has a (finite) limit at $-\infty$ if, when x becomes very large in negative value, f(x) becomes very close to ℓ

3.2.4 Infinite limit at infinity عند المالانهاية عند المالانهاية

Let $x_0 \in R$. We will put by definition:

a.
$$\lim_{x \to +\infty} f(x) = +\infty$$
 if:

$$\forall A > 0, \exists B > 0, such as x > B \Rightarrow f(x) > A.$$

b.
$$\lim_{x \to +\infty} f(x) = -\infty$$
 if:

$$\forall A > 0, \exists B > 0, such as x > B \Rightarrow f(x) < -A.$$

c.
$$\lim_{x \to -\infty} f(x) = +\infty$$
 if:

$$\forall A > 0, \exists B > 0, such as x < -B \Rightarrow f(x) > A.$$

d.
$$\lim_{x \to -\infty} f(x) = -\infty$$
 if:

$$\forall A > 0, \exists B > 0, such as x < -B \Rightarrow f(x) < -A.$$

Examples:

Prove the following limits using the definition

$$\lim_{x \to 1} 2x - 3 = -1$$

$$\lim_{x \to 4} \sqrt{x} = 2$$

$$\lim_{x \to 1} \frac{1}{(1-x)^2} = +\infty$$

$$\lim_{x \to 1} 2x^2 + 3x - 1 = +\infty$$

Indeterminate form

Some forms of limits are called indeterminate. An **indeterminate form** is an expression whose limit cannot be determined solely from the limits of the individual functions.

Example of indeterminate forms: 0/0, ∞/∞ , $+\infty -\infty$, $0\times\infty$, ∞^0 , 0^0

3.2.5 Properties of function limits

Let f, g: [a, b] \rightarrow R and $x_0 \in$] a, b[, we have:

a. If
$$\lim_{x \to x_0} f(x) = \pm \infty \implies \lim_{x \to x_0} \frac{1}{f(x)} = 0$$

a. If
$$\lim_{x \to x_0} f(x) = \pm \infty \implies \lim_{x \to x_0} \frac{1}{f(x)} = 0$$

b. If $f \le g$ and $\lim_{x \to x_0} f(x) = \ell \lim_{x \to x_0} g(x) = \ell' \implies \ell \le \ell'$

c. If
$$f \le g$$
 and $\lim_{x \to x_0} f(x) = +\infty$ so: $\lim_{x \to x_0} g(x) = +\infty$

c. If
$$f \le g$$
 and $\lim_{x \to x_0} f(x) = +\infty$ so: $\lim_{x \to x_0} g(x) = +\infty$
d. If $f \le g$ and $\lim_{x \to x_0} g(x) = -\infty$ so: $\lim_{x \to x_0} f(x) = -\infty$

Let f, g, h: [a, b] \rightarrow R and $x_0 \in]a, b[$, if we have: Theorem

i.
$$f(x) \le g(x) \le h(x)$$
, pour tout $x \in [a, b]$,

ii.
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell \in R.$$

$$\implies \text{So } \lim_{x \to x_0} g(x) = \ell$$

3.2.6 Operations on the limits

Let $f, g: [a, b] \to R$ and $x_0 \in]a, b[$, such that: $\begin{cases} \lim_{x \to x_0} f(x) = \ell \\ and \\ \lim_{x \to x_0} g(x) = \ell' \end{cases}$, so: Theorem

a.
$$\lim_{x \to x_0} (f(x) + g(x)) = \ell + \ell'$$

b.
$$\lim_{x \to x_0} (\lambda f(x)) = \lambda \ell$$

c.
$$\lim_{x \to x_0} f(x)g(x) = \ell \cdot \ell'$$

d.
$$\lim_{x \to x_0} |f(x)| = |\ell|$$

e.
$$\lim_{x \to x_0} |f(x) - \ell| = 0$$

f.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\ell}{\ell'} if \ \ell' \neq 0$$

Let $f:[a,b] \rightarrow [c,d]$, $g:[c,d] \rightarrow R$ and $x_0 \in [a,b[,y_0 \in [c,d]]$, such that: $\lim_{x \to x_0} f(x) = y_0$, and $\lim_{y \to y_0} g(y) = \ell$, so: Alors $\lim_{x \to x_0} (g \circ f)(x) = \ell$

Proposition Let $f, g: [a, b] \rightarrow R$ and $x_0 \in [a, b]$, we have:

a.
$$if \lim_{x \to x_0} f(x) = +\infty$$
, so $\lim_{x \to x_0} \frac{1}{f(x)} = 0$
b. $if \lim_{x \to x_0} f(x) = -\infty$, so $\lim_{x \to x_0} \frac{1}{f(x)} = 0$

b.
$$if \lim_{x \to x_0} f(x) = -\infty$$
, so $\lim_{x \to x_0} \frac{1}{f(x)} = 0$

c.
$$if f \le g \lim_{x \to x_0} f(x) = \ell$$
, and $\lim_{x \to x_0} g(x) = \ell'$, so: $\ell \le \ell'$
d. $if f \le g \lim_{x \to x_0} f(x) = +\infty$, so $\lim_{x \to x_0} g(x) = +\infty$,

d. if
$$f \le g \lim_{x \to x_0} f(x) = +\infty$$
, so $\lim_{x \to x_0} g(x) = +\infty$,

3.3 Continuity of a function

3.3.1 General definitions

Definition 3.3.1. Consider a function $f: D_f \to R$, D_f being an interval of R. We say that f is continuous at the point $x_0 \in D_f$ if:

$$\lim_{x\to x_0} f(x) = f(x_0)$$

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I, |x-x_0| < \delta \Rightarrow |f(x)-f(x_0)| < \varepsilon$$

To remember:

remember:

 1.
$$f(x_0)$$
 exists: f is defined at x_0
 x_0 abail are as a size of x_0 and x_0 are a size of x_0 and x_0 and x_0 are as a size of x_0 and x_0 are a size of x_0 and x_0 are a size of x_0 are a size of x_0 are a size of x_0 and x_0 are a size of x_0 are a size of x_0 are a size of x_0 and x_0 are a size of $x_$

Examples

- 1. Is the function $f(x) = \frac{x^2 4}{x 2}$ continuous f is discontinuous at 2 because f(2) is undefined.
 - 2. Determine whether the function $f(x) = \begin{cases} -x^2 4 & \text{if } x \le 3 \\ 4x 8 & \text{if } x > 3 \end{cases}$ is continuous at x = 3
 - ✓ We calculate f(3): $f(3) = -3^2 4 = -5$, Thus, f(3) is defined.
 - ✓ We calculate: $\lim_{x\to>3} f(x)$ and $\lim_{x\to<3} f(x)$

$$\lim_{x \to 3} f(x) = -3^2 - 4 = -5$$

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} 4(3) - 8 = 4$$

 \checkmark -5 ≠ 4 \Leftrightarrow not continuous at 3

Definition 3.3.2. A function defined on an interval I is continuous on I if it is continuous at every point of I. The set of continuous functions on I is denoted by C (I).

Continuity on the left \ on the right

Definition 3.3.3 Consider a function $f: D_f \to R$, I being an interval of R.

1. The function is continuous to the right at x_0 if

$$\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow$$

$$\forall \varepsilon > 0, \exists \delta > 0$$
, such that: $x_0 < x < x_0 + \delta, \rightarrow |f(x) - f(x_0)| \leq \varepsilon$.

2. The function f is said to be left continuous at x_0 if

$$\lim_{x \to$$

$$\forall \varepsilon > 0, \exists \delta > 0$$
, such that: $x_0 - \delta < x < x_0, \rightarrow |f(x) - f(x_0)| \leq \varepsilon$.

3.3.2 Operations on continuous functions

Theorem 3.3.1. Let D_f be an interval, and f and g be functions defined on D_f and continuous at $x_0 \in D_f$ Then

- 1. λf is continuous at x_0 , $(\lambda \in R)$.
- 2. f + g is continuous at x_0 .
- 3. f.g is continuous at x_0 .
- 4. $\frac{f}{g}$ (if g(x0) 6 = 0) is continuous at x_0 .

3.4 Differentiability of a function

Definition and properties

Definition 3.4.1. Let Df be an interval of R, x_0 a point of Df, and f a function $(f: Df \rightarrow R)$

We say that f is **differentiable (derivable)** at the point x_0 if the limit $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists finitely

تعریف نقول ان الدالة
$$f$$
 قابلة للاشتقاق في النقطة x_0 ادا كانت النهاية $\frac{f(x)-f(x_0)}{x-x_0}$ موجودة ومنتهية

This limit is called the derivative of f at x_0 and is noted $f'(x_0)$

$$f'(x_0)$$
 با بارات و النهاية مشتق الدالة f عند النقطة و النهاية مشتق الدالة و الدالة و النهاية مشتق الدالة و الدالة

If we put $x - x_0 = h$ we obtain:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

(بیانیا) Graphically

The derivative of f at x_0 is the <u>slope of the tangent line</u> at this point $(x_0, f(x_0))$, which is the limit as $h \to 0$ of the slopes of the lines through

Example Let f be the real function defined on R by $f(x) = x^2$. The derivative of f at a point $x^0 \in R$ is:

$$\lim_{h \to 0} \frac{f(h + x_0) - f(x_0)}{h} = \lim_{h \to 0} \frac{(h + x_0)^2 - {x_0}^2}{h} = \lim_{h \to 0} \frac{{x_0}^2 + h^2 + 2x_0 \cdot h - {x_0}^2}{h}$$
$$= \lim_{h \to 0} h + 2x_0 = 2x_0$$

For
$$x_0 = 1$$
, $f'(x_0) = 2$

The function y = f(x) is said to be differentiable in an open interval I if it is differentiable at every point of I

Proposition 3.4.1. Every differentiable function is continuous, but the converse is not true. (differentiable ⇒ continuous)

3.4.1 Derivation operations

Theorem 3.4.1 Let f and g be two functions defined on the interval $I \subset R$ with and $x \in I$. If the functions f and g are differentiable at x_0 , then

1. $\forall \alpha \in \mathbb{R}$, αf is differentiable at x0 and we have:

$$(\alpha f)'(x_0) = \alpha f'(x_0)$$

2. f + g is differentiable at x0 and we have

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

3. *f g* is differentiable at x0 and we have

$$(f.g)'(x_0) = f'(x_0).g(x_0) + f(x_0).g'(x_0)$$

4. If $g'(x_0) \neq 0$ the function $\frac{f}{g}$ is differentiable

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$
$$(1\backslash g)'(x_0) = \frac{-g'(x_0)}{g^2(x_0)}$$

Theorem Let J be an interval of $R, f: I \to J$ and $g: J \to R$. If f is differentiable in $x_0 \in I$ and g differentiable at $f(x_0) \in J$, the composite function $g \circ f: I \to R$ is differentiable at x_0 and

$$(g \circ f)'(x) = f'(x).g'(f(x))$$

3.4.2 Derivatives of standard functions

Fonction f	Dérivée f'	Fonction f	Dérivée $f^{'}$
x^n	nx^{n-1}	u^n	$nu'u^{n-1}, n \in \mathbb{N}^*$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\frac{1}{u}$	$-\frac{u'}{u^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	\sqrt{u}	$\frac{u'}{2\sqrt{u}}$
$\ln x$	$\frac{1}{x}$	$\ln u$	$\frac{u'}{u}$
e^x	e^x	e^u	$u'e^u$
$\sin(x)$	$\cos(x)$	$\sin(u)$	$u^{'}\cos(u)$
$\cos(x)$	$-\sin\left(x\right)$	$\cos(u)$	$-u'\sin(u)$

Proposition Let $f: I \to R$ be a differentiable function on an Intervale I we have:

- (1) $\forall x \in I$, f'(x) = 0 if and only if f is constant on I
- (2) If $\forall x \in I$, $f'(x) \ge 0$ (resp f'(x) > 0), then f is increasing (resp strictly increasing).
- (3) if $\forall x \in I, f'(x) \le 0$ (resp f'(x) < 0), then f is decreasing (resp strictly decreasing)

3.4.3 L'hopital's rule

Theorem 3.4.7 Let f and g be two functions differentiable on I and both tending towards 0 (or both tend to ∞) $for x \to a$ $(or \infty)$. We assume that $g(x) \neq 0$ does not vanish in a neighborhood of a and that: $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \left(\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = exists\right)$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l$$

In other words, if the limit: $\lim_{x \to a} \frac{f(x)}{g(x)}$ is of indeterminate type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ for : $x \to a$ or ∞ then we have: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = l$

Example Find
$$\lim_{x\to 0} \frac{x^2}{\sin x}$$
 and $\lim_{x\to 0} \frac{3x^2+x+4}{5x^2+8x}$

Solution As observed above, this limit is of indeterminate type $\frac{0}{0}$, so l'Hôpital's rule applies. We have

$$\lim_{x\to 0}\frac{x^2}{\sin x}\ \left(\frac{0}{0}\right)\ \stackrel{\text{l'H}}{=}\ \lim_{x\to 0}\frac{2x}{\cos x}=\frac{0}{1}=0,$$

where we have first used l'Hôpital's rule and then the substitution rule.

$$\lim_{x\to\infty}\frac{3x^2+x+4}{5x^2+8x}\ \left(\frac{\infty}{\infty}\right)\ \stackrel{\mathrm{l'H}}{=}\lim_{x\to\infty}\frac{6x+1}{10x+8}\ \left(\frac{\infty}{\infty}\right)\ \stackrel{\mathrm{l'H}}{=}\lim_{x\to\infty}\frac{6}{10}=\frac{6}{10}=\frac{3}{5}.$$