
1

TP N° 01

What is MIPS Assembly?

MIPS Assembly is a low-level programming language used for programming MIPS (Microprocessor

without Interlocked Pipeline Stages) processors. MIPS Assembly is human-readable, but it's much

closer to the language that computers understand (machine code) than high-level languages like

Python or Java.

Why learn MIPS Assembly?

You might be wondering, "Why should I learn MIPS Assembly when there are so many high-level

languages to choose from?" It's a valid question! But, here's the thing: learning MIPS Assembly gives

you a deeper understanding of how computers work at their core. It's like learning the secrets of the

universe, but for computers.

What you will learn?

In this TP you will learn:

1. to download, install, and run the MARS IDE.

2. what are registers, and how are they used in the CPU.

3. register conventions for MIPS.

4. how memory is configured for MIPS.

5. to assemble and run a program in MARS.

6. the syscall instruction, and how to pass parameters to syscall.

7. what immediate values are in assembly language.

8. assembler directives, operators, and instructions.

9. to input and output integer and string data in MIPS assembly.

The MARS IDE

We will use an IDE called the MIPS Assembler and Runtime Simulator (MARS). There are a number

of MIPS simulators available, some for educational use, and some for commercial use.

MARS is an executable jar file, so you must have the Java Runtime Environment (JRE) installed to

run MARS.

Year: 2024/2025

Module: Computer Architecture

Abdelhafid Boussouf University Center, Mila

Institute of Mathematics and computer science

Department of Computer Science

2nd Year Informatics

2

Before you can compile your MIPS assembly code you must first save the file.

 The option to compile will not be available until you save your code.

 The option to run your code will not be available until you compile your code.

.

First program :

1. In the MARS software create a new file and copy the assembler program below

2. Determine what the program does using the help

 .data
vars: .word 5
 .word 10
 .text
 la $t0, vars
 lw $t1, 0($t0)
 lw $t2, 4($t0)
saut: bge $t1, $t2, exit
 move $a0, $t1
 li $v0, 1
 syscall
 addi $t1, $t1, 1
 j saut
exit: li $v0, 10

 syscall

