Exercises on Hypothesis Testing

Exercice 1. Let $X \sim Geometric(\theta)$. We observe X and we need to decide between

 $H_0: \theta = \theta_0 = 0.5,$

 $H_1: \theta = \theta_1 = 0.1.$

Design a level 0.05 test ($\alpha = 0.05$) to decide between H_0 and H_1 . Find the probability of type-II error β .

Exercice 2. Let X_1, X_2, X_3, X_4 be a random sample from a $N(\mu, 1)$ distribution, where μ is unknown. Suppose that we have observed the following values 2.82, 2.71, 3.22, 2.67. We would like to decide between

 $H_0: \mu = \mu_0 = 2,$ $H_1: \mu \neq 2.$

Assuming $\alpha = 0.1$, do you accept H_0 or H_1 ? If we require significance level α , find β as a function of μ and α .

Exercice 3. Let $X_1, X_2, \ldots, X_{100}$ be a random sample from an unknown distribution. After observing this sample, the sample mean and the sample variance are calculated to be

 $\bar{X} = 21.32, S^2 = 27.6.$ Design a level 0.05 test to choose between $H_0: \mu = 20,$ $H_1: \mu > 20.$ Do you accept or reject H_0 ?

Exercice 4. Let X_1, X_2, X_3, X_4 be a random sample from a $N(\mu, \sigma^2)$ distribution, where μ and σ are unknown. Suppose that we have observed the following values 3.58, 10.03, 4.77, 14.66. We would like to decide between

 $\begin{array}{l} H_0: \mu \geq 10, \\ H_1: \mu < 10. \\ Assuming \; \alpha = 0.05, \; do \; you \; accept \; H_0 \; or \; H_1? \end{array}$

Exercice 5. Let X_1, X_2, \ldots, X_{81} be a random sample from an unknown distribution. After observing this sample, the sample mean and the sample variance are calculated to be $\overline{X} = 8.25, S^2 = 14.6$.

Design a test to decide between $H_0: \mu = 9,$

 $H_1: \mu < 9,$ and calculate the P-value for the observed data.