
Hypothesis Testing

Introduction
In many cases, it is necessary to evaluate the validity of a hypothesis, deter-
mining whether it is true or false. For instance, a pharmaceutical company
may want to determine if a new drug is effective in treating a disease. In this
scenario, two hypotheses are considered: the first hypothesis (H0) states that
the drug is not effective, while the second hypothesis (H1) states that the drug
is effective. The terms H0 and H1 are used to refer to these hypotheses, respec-
tively. Another example involves a radar system that uses radio waves to detect
aircraft. The system receives a signal and needs to decide whether an aircraft
is present or not. In this case, there are two opposing hypotheses:

• H0: No aircraft is present.

• H1: An aircraft is present.

The hypothesis H0 is known as the null hypothesis, while H1 is referred to as
the alternative hypothesis. The null hypothesis (H0) is typically considered
the default assumption, initially assumed to be true. On the other hand, the
alternative hypothesis (H1) contradicts H0. Based on the observed data, a
decision must be made to either accept H0 or reject it, in which case H1 is
accepted. These are known as hypothesis testing problems. In this chapter,
we will discuss how to approach such problems from a classical (frequentist)
perspective. We will begin with an example and introduce some commonly
used terminology. It is not necessary to focus too much on the terminology in
this example, as more precise definitions will be provided later on.

Example 0.0.1. Suppose you have a coin and you want to determine whether
it is fair or not. Specifically, let θ represent the probability of heads, θ = P (H).
Two hypotheses are considered:

• H0 (the null hypothesis): The coin is fair, i.e., θ = θ0 = 1
2 .

• H1 (the alternative hypothesis): The coin is not fair, i.e., θ ̸= 1
2 .
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Solution
To evaluate whether the coin is fair or not, we conduct an experiment. We toss
the coin 100 times and record the number of heads. Let X denote the number
of heads observed, so X follows a binomial distribution with parameters 100
and θ (X ∼ Binomial(100, θ)).
If H0 is true, then θ = θ0 = 1

2 , and we expect the number of heads to be close
to 50. Intuitively, if we observe a number of heads close to 50, we should accept
H0; otherwise, we should reject it. More specifically, the following criteria are
suggested:

• If |X − 50| is less than or equal to a certain threshold, we accept H0.

• If |X − 50| exceeds the threshold, we reject H0 and accept H1.

Let’s denote this threshold as t.

• If |X − 50| ≤ t, accept H0.

• If |X − 50| > t, accept H1.

However, the question arises: How do we choose the threshold t? To choose t
appropriately, we need to define some requirements for our test. An important
consideration is the probability of error. One type of error occurs when we
reject H0 while it is actually true, known as a type I error. Specifically, this
refers to the event that |X − 50| > t when H0 is true. Therefore, we can
express the probability of a type I error as P (type I error) = P (|X − 50| >
t|H0). We interpret this as the probability that |X − 50| > t when H0 is
true. (Note that in classical statistics, H0 and H1 are not treated as random
events, so P (|X −50| > t|H0) is not a conditional probability. Another common
notation is P (|X − 50| > t when H0 is true).) To determine t, we can choose
a desired value for P (type I error). For example, we might want a test where
P (type I error) ≤ α = 0.05.

0.1 General Setting and Definitions
Introduced the fundamentals of hypothesis testing. In this section, we aim to es-
tablish a general framework for hypothesis testing problems and formally define
the terminology used in such tests. While there may be unfamiliar phrases like
null hypothesis, type I error, significance level, etc., there are no fundamentally
new concepts or tools here. With the help of a few examples, these concepts
should become clear.

Let’s consider an unknown parameter θ. In hypothesis testing problems,
we need to decide between two contradictory hypotheses. Specifically, let S
represent the set of possible values for θ. We can partition S into two disjoint
sets, S0 and S1. We define H0 as the hypothesis that θ belongs to S0, and H1
as the hypothesis that θ belongs to S1.

2



• H0 (null hypothesis): θ belongs to S0.

• H1 (alternative hypothesis): θ belongs to S1.

In Example 0.0.1, we had S = [0, 1], S0 =
{ 1

2
}

, and S1 = [0, 1] −
{ 1

2
}

. In
this case, H0 is an example of a simple hypothesis because S0 contains only one
value of θ. On the other hand, H1 is an example of a composite hypothesis since
S1 contains more than one element. It is common for the null hypothesis to be
a simple hypothesis.

To make a decision between H0 and H1, we often examine a function of
the observed data. For example, in Example 0.0.1, we looked at the random
variable Y defined as:

Y = X − nθ0√
nθ0(1 − θ0)

,

where X was the total number of heads observed. Here, X is a function of
the observed data (sequence of heads and tails X =

∑n
i=1{Head}), and thus Y

is also a function of the observed data. We refer to Y as a statistic.
Reminder: Let X1, X2, . . . , Xn be a random sample of interest. A statistic

is a real-valued function of the data. For instance, the sample mean defined as
W (X1, X2, . . . , Xn) = X1+X2+...+Xn

n is a statistic. A statistic test is a statistic
on which we base our hypothesis test.

To choose between H0 and H1, we select a test statistic W = W (X1, X2, . . . , Xn).
Assuming H0, we define the set A as the set of possible values of W for
which we would accept H0. A is called the acceptance region, while the set
R = S − A is referred to as the rejection region. In Example 0.0.1, the accep-
tance region was determined as A = [−1.96, 1.96], and the rejection region was
R = (−∞, −1.96) ∪ (1.96, ∞).

There are two possible errors that can occur. We define a type I error as the
event of rejecting H0 when H0 is actually true. Note that the probability of a
type I error generally depends on the true value of θ. More specifically:

P (type I error|θ) = P (Reject H0|θ) = P (W ∈ R|θ), for θ ∈ S0.

If the probability of a type I error satisfies:

P (type I error) ≤ α, for all θ ∈ S0,

we say the test has a significance level α or that the test is a level α test.
it’s important to note that the significance level α is chosen by the experi-

menter and represents the maximum tolerable probability of committing a type
I error.

The other possible error is a type II error, which occurs when we fail to
reject H0 when H0 is false. The probability of a type II error is denoted by β,
and it depends on the true value of θ as well as the specific value of θ under
consideration as an alternative hypothesis. More formally:
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P (type II error|θ′) = P (Do not reject H0|θ′) = P (W ∈ A|θ′), for θ′ ∈ S1.

The power of a test is defined as 1 − β, which represents the probability of
correctly rejecting H0 when H0 is false.

In summary, hypothesis testing involves making decisions between two con-
tradictory hypotheses H0 and H1. A test statistic is used to make this decision,
and an acceptance region A and a rejection region R are defined based on the
test statistic. The significance level α determines the maximum tolerable prob-
ability of a type I error, while the power of a test represents the probability of
correctly rejecting H0 when H0 is false.

0.2 One-sided tests and Two-sided tests:
In hypothesis testing, the choice between a one-sided (or one-tailed) test and
a two-sided (or two-tailed) test depends on the nature of the research question
and the direction of interest.

• One-sided test:

– Focuses on detecting an effect in one specific direction (greater than
or less than).

– Null hypothesis (H0) is typically stated as no effect or a specific value.
– Example: H0 : µ ≤ cst versus H1 : µ > cst (testing if the mean is

greater than cst).

• Two-sided test:

– Examines whether there is a significant difference in any direction.
– Null hypothesis (H0) often states no effect or equality.
– Example: H0 : µ = cst versus H1 : µ ̸= cst (testing if the mean is

different from 10).

The choice between one-sided and two-sided tests depends on the specific hy-
potheses being tested and the research question’s requirements.

Example 0.2.1. Suppose you are conducting a hypothesis test on the average
height (µ) of a certain population.

• One-sided test:

– Null hypothesis (H0): µ ≤ 65 inches
– Alternative hypothesis (H1): µ > 65 inches
– This one-sided test aims to determine if the average height is greater

than 65 inches.
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• Two-sided test:

– Null hypothesis (H0): µ = 70 inches
– Alternative hypothesis (H1): µ ̸= 70 inches
– This two-sided test aims to determine if the average height is different

from 70 inches.

For the one-sided test, you would be interested in detecting whether the
average height is significantly greater than the specified value (65 inches). In
the two-sided test, the interest is in detecting any significant difference in the
average height, whether it is greater or less than the specified value (70 inches).

The choice between one-sided and two-sided tests depends on the specific
hypothesis and the research question you want to address.

0.3 The different types of errors
In hypothesis testing, there are two types of possible errors: type I errors and
type II errors. Understanding these error types is important for evaluating and
designing statistical tests.

Type I Error
A type I error occurs when the null hypothesis (H0) is rejected even though it
is true. In other words, a statistically significant result is found when there is
really no effect. The probability of making a type I error is denoted by alpha
(α) and is preset at the beginning of the test, usually at 5% or 1%.

Type II Error
A type II error occurs when the null hypothesis (H0) fails to be rejected even
though it is false. In other words, no statistically significant result is found
even though there is a real effect. The probability of making a type II error is
denoted by beta (β). The power of a test is equal to 1 − β and indicates the
probability of correctly rejecting the null hypothesis when it is false.

Relationship Between Type I and Type II Errors
The type I and type II error rates are intrinsically related. As the significance
level (α) decreases, making it harder to reject the null, the chance of type I error
decreases but the chance of type II error increases. Conversely, increasing the
significance level makes it easier to reject the null and lowers type II errors but
raises type I errors. There is always a tradeoff between the two error types.

Understanding the different types of errors in hypothesis testing is crucial for
properly evaluating statistical tests and avoiding misleading conclusions from
data analysis. Both type I and type II errors should be considered when design-
ing experiments and setting significance levels.
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0.4 Power of a Statistical Test
Statistical hypothesis testing is a fundamental practice in data analysis and
research. It allows to make inferences about populations based on experimental
data and results from samples. A crucial consideration in the planning and
evaluation of hypothesis tests is the power of the statistical tests being used.
Properly assessing power helps ensure meaningful and conclusive results can be
obtained from studies.

Definition 0.4.1. The power of a statistical test gives the probability of rejecting
the null hypothesis when it is false. Just as the significance level (alpha) gives
the probability of rejecting the null hypothesis when it is true, power quantifies
the chance of correctly rejecting the null hypothesis when it is false. Thus, power
represents a test’s ability to correctly reject the null hypothesis.

Calculating power beforehand is important to ensure the sample size is suf-
ficient for the test objectives. Otherwise, the test may be inconclusive, wasting
resources. Power should generally not be calculated after the test, except to
determine an adequate sample size for a follow-up study.

Example 0.4.1. Consider testing whether the average time per week spent
watching TV is 4 hours versus the alternative that it is greater than 4 hours.
We will calculate the power of this test for a specific value under the alternative
hypothesis of 7 hours.

Solution:

1. State the null and alternative hypotheses

• Null Hypothesis (H0): The average time spent watching TV per week
(µ) equals 4 hours

• Alternative Hypothesis (H1): The average time spent watching TV
per week (µ) equals 6 hours

2. Define the parameters

• µ0 = Average time under the null hypothesis = 4 hours
• µ1 = Average time under the alternative hypothesis = 6 hours

3. Specify additional information

• The standard deviation from past data is known to be 2 hours
• The sample size is 4

4. Calculate the power of this test for a sample size of 4. Show the step-by-
step working.

6



1. At the 5% significance level, the decision criterion for the test is to reject
H0 if Z > 1.645, where

Z = X̄ − µ0
σ√
n

= X − 4
2√
4

= X − 4.

The 5% critical value from the standard normal distribution is 1.645.
Equating the critical Z-value to the calculated Z gives the correspond-
ing (hypothetical) sample mean value:

X = 5.645.

2. Calculate the Z-statistic assuming the alternative hypothesis is true, i.e.,
µ1 = 6:

Z = X̄ − µ1
σ√
n

= 5.645 − 6
2√
4

= −0.355.

3. P (Z > −0.355) = 0.6387. The power of the test is approximately 64%. In
general, tests with 80% power and higher are considered to be statistically
powerful.

To increase power, one may:

• Increase effect size difference

• Increase sample size(s)

• Decrease variability

• Increase significance level (but increases type I error risk)

0.5 P-Values
In the previous discussions, we only provided an "accept" or "reject" decision
as the outcome of a hypothesis test. However, we can offer more information
by using a measure called P-values. In essence, P-values indicate how close the
decision was. To elaborate, if we reject the null hypothesis H0 at a significance
level α = 0.05, we can inquire about the outcome at a different significance
level, such as α = 0.01. Can we still reject H0? More precisely, we can ask the
following question:

What is the smallest significance level α that leads to the rejection of the
null hypothesis?

The response to this query is known as the P-value. The P-value is the
minimum significance level α that results in rejecting the null hypothesis. In
simple terms, if the P-value is small, it implies that the observed data is highly
unlikely to occur under H0, thereby providing stronger evidence for rejecting
the null hypothesis. How do we determine P-values? Let’s examine an example.
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Example 0.5.1. Suppose you have a coin and you want to investigate whether
it is fair or biased. Specifically, let θ denote the probability of obtaining heads,
where θ = P (H). You need to choose between the following hypotheses:

H0 (null hypothesis): The coin is fair, i.e., θ = θ0 = 1
2 .

H1 (alternative hypothesis): The coin is biased, i.e., θ > 1
2 .

You toss the coin 100 times and observe 60 heads. Can we reject H0 at a
significance level α = 0.05? Can we reject H0 at a significance level α = 0.01?
What is the P-value?

Solution
Let X be the random variable representing the number of observed heads.

In our experiment, we observed X = 60. Since n = 100 is relatively large,
assuming H0 is true, the random variable

W = X − nθ0√
nθ0(1 − θ0)

is approximately a standard normal random variable, N(0, 1). If H0 is true,
we expect X to be close to 50, whereas if H1 is true, we anticipate X to be
larger. Therefore, we can propose the following test: choose a threshold c. If
W ≤ c, we accept H0; otherwise, we accept H1. To calculate the P(type I error),
we can express it as

P (type I error) = P (Reject H0|H0) = P (W > c|H0).

Since W follows a standard normal distribution under H0, we need to select
c = zα to ensure a significance level α. In this example, we find that

W = X − 50
5 = 60 − 50

5 = 2.

If we require a significance level α = 0.05, then

c = z0.05 = 1.645.

The value above can be obtained in MATLAB using the command norminv(1
- 0.05). As W = 2 > 1.645, we reject H0 and accept H1.

If we require a significance level α = 0.01, then

c = z0.01 = 2.33.

The value above can be obtained in MATLAB using the command norminv(1
- 0.01). As W = 2 ≤ 2.33, we fail to reject H0, so we accept H0.

The P-value is the minimum significance level α that leads to the rejection
of H0. In this case, since W = 2, we reject H0 only if c < 2. Note that zα = c,
thus

α = 1 − Φ(c).

If c = 2, we obtain
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α = 1 − Φ(2) = 0.023.

Therefore, we rejectH0 at a significance level of α = 0.023. The P-value is
0.023.

0.6 Hypothesis Testing for the Mean
Here, we would like to discuss some common hypothesis testing problems. We
assume that we have a random sample X1, X2, ..., Xn from a distribution and
our goal is to make inference about the mean of the distribution µ. We consider
three hypothesis testing problems. The first one is a test to decide between the
following hypotheses:

H0 : µ = µ0, H1 : µ ̸= µ0.

In this case, the null hypothesis is a simple hypothesis and the alternative
hypothesis is a two-sided hypothesis (i.e., it includes both µ < µ0 and µ > µ0).
We call this hypothesis test a two-sided test. The second and the third cases
are one-sided tests. More specifically, the second case is

H0 : µ ≤ µ0, H1 : µ > µ0.

Here, both H0 and H1 are one-sided, so we call this test a one-sided test.
The third case is very similar to the second case. More specifically, the third
scenario is

H0 : µ ≥ µ0, H1 : µ < µ0.

In all of the three cases, we use the sample mean X = 1
n (X1+X2+...+Xn) to

define our statistic. In particular, if we know the variance of the Xi’s, V ar(Xi) =
σ2, then we define our test statistic as the normalized sample mean (assuming
H0):

W (X1, X2, ..., Xn) = X − µ0

σ/
√

n
.

If we do not know the variance of the Xi’s, we use

W (X1, X2, ..., Xn) = X − µ0

S/
√

n
,

where S is the sample standard deviation,

S =

√√√√ 1
n − 1

n∑
k=1

(Xk − X)2.

In any case, we will be able to find the distribution of W , and thus we can
design our tests by calculating error probabilities. Let us start with the first
case.
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0.6.1 Two-sided Tests for the Mean
Here, we are given a random sample X1, X2, ..., Xn from a distribution. Let
µ = E(Xi). Our goal is to decide between

H0 : µ = µ0, H1 : µ ̸= µ0.

Example 0.0.1, which we saw previously, is an instance of this case. If H0 is
true, we expect X to be close to µ0, and so we expect W (X1, X2, ..., Xn) to be
close to 0 (see the definition of W above).

Therefore, we can suggest the following test. Choose a threshold, and call it
c. If |W | ≤ c, accept H0, and if |W | > c, accept H1. How do we choose c? If α
is the required significance level, we must have

P (type I error) = P (Reject H0|H0) = P (|W | > c|H0) ≤ α.

Thus, we can choose c such that P (|W | > c|H0) = α. Let us look at an
example.

Example 0.6.1. Let X1, X2, ..., Xn be a random sample from a N(µ, σ2) dis-
tribution, where µ is unknown but σ is known. Design a level α test to choose
between

H0 : µ = µ0, H1 : µ ̸= µ0.

Solution As discussed above, we let

W (X1, X2, ..., Xn) = X − µ0

σ/
√

n
.

Under the assumption of H0, we can observe that W follows a standard
normal distribution, W ∼ N(0, 1).

To choose a threshold value c, we aim to satisfy the condition P (|W | >
c|H0) = α. Since the standard normal distribution is symmetric around 0,
we have P (|W | > c|H0) = 2P (W > c|H0). Hence, we conclude that P (W >
c|H0) = α/2. Therefore, c = zα/2, where zα/2 represents the (1−α/2) percentile
of the standard normal distribution.

Hence, we accept H0 if
∣∣X − µ0

∣∣ /(σ/
√

n) ≤ zα/2 and reject it otherwise.
Relation to Confidence Intervals: It is interesting to examine the above

acceptance region. Here, we accept H0 if |X̄ − µ0
σ√
n

| ≤ zα/2. We can rewrite
the above condition as µ0 ∈ [X̄ − zα/2

σ√
n

, X̄ + zα/2
σ√
n

]. The above interval
should look familiar to you. It is the (1 − α) × 100% confidence interval for µ0.
This is not a coincidence as there is a general relationship between confidence
interval problems and hypothesis testing problems.

Example 0.6.2. Let X1, X2, . . . , Xn be a random sample from a N(µ, σ2) dis-
tribution, where µ is unknown but σ is known. Design a level α test to choose
between
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•
H0 : µ = µ0

•
H1 : µ ̸= µ0.

,

find β, the probability of type II error, as a function of µ.

Solution: We have

β(µ) = P (type II error)
= P (accept H0|µ)

= P (|X̄ − µ0
σ√
n

| < zα/2|µ).

If Xi ∼ N(µ, σ2), then X̄ ∼ N(µ, σ2

n ). Thus,

β(µ) = P (|X̄ − µ0
σ√
n

| < zα/2|µ)

= P (µ0 − zα/2
σ√
n

≤ X̄ ≤ µ0 + zα/2
σ√
n

)

= Φ(zα/2 + µ0 − µ

σ/
√

n
) − Φ(−zα/2 + µ0 − µ

σ/
√

n
).

Unknown variance: The above results (Example 0.6.2) can be extended to
the case when we do not know the variance using the t-distribution. More
specifically, consider the following example.

Example 0.6.3. Let X1, X2, ..., Xn be a random sample from a N(µ, σ2) dis-
tribution, where µ and σ are unknown. Design a level α test to choose between

H0 : µ = µ0
H1 : µ ̸= µ0
Solution: Let S2 be the sample variance for this random sample. Then, the

random variable W defined as W (X1, X2, ..., Xn) = X̄−µ0
S/

√
n

has a t-distribution
with n − 1 degrees of freedom, i.e., W ∼ T (n − 1). Thus, we can repeat the
analysis of Example 8.24 here. The only difference is that we need to replace
σ by S and zα/2 by tα/2,n−1. Therefore, we accept H0 if |W | ≤ tα/2,n−1, and
reject it otherwise. Let us look at a numerical example of this case.

Example 0.6.4. Consider the following scenario: Let X1, X2, . . . , Xn represent
a random sample drawn from a normal distribution with mean µ and variance
σ2. In this case, the value of µ is unknown while σ is known. Our objective is
to design a test with a significance level α to make a decision between the null
hypothesis H0 : µ ≤ µ0 and the alternative hypothesis H1 : µ > µ0.
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To accomplish this, we can define a test statistic W (X1, X2, . . . , Xn) as
X̄−µ0

σ√
n

. If H0 is true (meaning µ ≤ µ0), we anticipate that X̄ (and consequently

W ) will be relatively small. Conversely, if H1 is true, we expect X̄ (and thus
W ) to be larger. Based on this observation, we can establish the following test:
Select a threshold value, denoted as c. If W ≤ c, we accept H0; otherwise, if
W > c, we accept H1.

The question now arises: How do we determine the appropriate value for
c? To ensure that the probability of committing a type I error (rejecting H0
when it is true) is at most α, we need to examine the relationship between c
and α. The probability of a type I error is contingent on the value of µ. More
precisely, for any µ ≤ µ0, we can express the probability of a type I error as
follows: P (type I error|µ) = P (Reject H0|µ) = P (W > c|µ).

By employing properties of the normal distribution, we can simplify the ex-

pression above: P (W > c|µ) = P

(
X̄−µ0

σ√
n

> c|µ
)

= P

(
X̄−µ

σ√
n

> c + µ0−µ
σ√
n

|µ
)

≤

P

(
X̄−µ

σ√
n

> c|µ
)

(since µ ≤ µ0) = 1−Φ(c) (since X̄−µ
σ√
n

follows a standard normal distribution).

Consequently, we can select α = 1 − Φ(c), which implies c = zα. Therefore,
we accept H0 if X̄−µ0

σ√
n

≤ zα, and we reject it otherwise.
The above analysis can be extended to other cases as well. In general, sup-

pose we are given a random sample X1, X2, . . . , Xn drawn from a distribution,
and let µ = E(Xi). Our objective is to make a decision between the null hy-
pothesis H0 : µ ≤ µ0 and the alternative hypothesis H1 : µ > µ0.

We can define the test statistic W as follows: W (X1, X2, . . . , Xn) = X̄−µ0
S√

n

if σ (the variance of Xi) is known, and W (X1, X2, . . . , Xn) = X̄−µ0
S√

n

if σ is

unknown. If H0 is true (i.e., µ ≤ µ0), we expect X̄ (and thus W ) to be relatively
small. Conversely, if H1 is true“‘ (i.e., µ > µ0), we anticipate X̄ (and thus W )
to be larger. Based on this expectation, we can establish the following test:
Choose a threshold c. If W ≤ c, we accept H0; otherwise, if W > c, we accept
H1.

To determine the value of c, note that P (type I error) = P (Reject H0|H0) =
P (W > c|µ ≤ µ0) ≤ P (W > c|µ = µ0). The last inequality holds because
increasing µ can only increase the probability of W > c. In other words, we
assume the worst-case scenario, where µ = µ0, to compute the probability of
error. Hence, we can select c such that P (W > c|µ = µ0) = α. By following
this procedure, we obtain the acceptance regions depicted in Table 8.3.

Example 0.6.5. The average adult male height in a certain country is 170 cm.
We suspect that the men in a certain city in that country might have a different
average height due to some environmental factors. We pick a random sample of
size 9 from the adult males in the city and obtain the following values for their
heights (in cm):

176.2, 157.9, 160.1, 180.9, 165.1, 167.2, 162.9, 155.7, 166.2
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Table 1: One-sided hypothesis testing for the mean: H0 : µ ≤ µ0, H1 : µ > µ0.
Case Test Statistic Acceptance Region

Xi ∼ N(µ, σ2), σ known W = X̄−µ0
σ√
n

W ≤ zα

n large, Xi non-normal W = X̄−µ0
S√

n

W ≤ zα

Xi ∼ N(µ, σ2), σ unknown W = X̄−µ0
S√

n

(remaining part of the sentence is missing)

Assume that the height distribution in this population is normally dis-
tributed. Here, we need to decide between

H0 : µ = 170
H1 : µ ̸= 170
Based on the observed data, is there enough evidence to reject H0 at signif-

icance level α = 0.05?
Solution: Let’s first calculate the sample mean and sample standard devi-

ation:

• Sample mean, X̄ = 1
n

∑n
i=1 Xi = 166.44

• Sample standard deviation, S =
√

1
n−1

∑n
i=1(Xi − X̄)2 = 8.548

• The test statistic, W = X̄−µ0
S/

√
n

= 166.44−170
8.548/

√
9 = −1.478

Since we have a two-sided alternative hypothesis, we need to find the critical
values for the t-distribution with n − 1 = 9 − 1 = 8 degrees of freedom. For a
significance level of α = 0.05, the critical values are tα/2,n−1 = t0.025,8 = 2.306.

Since |W | = 1.478 < tα/2,n−1 = 2.306, we do not have enough evidence to
reject H0 at the significance level of α = 0.05. Therefore, based on the observed
data, there is not enough evidence to conclude that the average height of men
in the city is different from 170 cm.

0.7 Likelihood Ratio Tests
In this section, we will explore the concept of Likelihood Ratio Tests, which is a
general hypothesis testing procedure. Before diving into the details, let’s review
the definition of the likelihood function, which we have previously discussed.

0.7.1 Review of the Likelihood Function
Consider a random sample X1, X2, X3, ..., Xn from a distribution with a param-
eter θ. The likelihood function is defined differently for discrete and continuous
random variables:

• For discrete random variables, the likelihood function is denoted as L(x1, x2, ..., xn; θ)
and represents the probability mass function PX1X2...Xn(x1, x2, ..., xn; θ).
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• For continuous random variables, the likelihood function is denoted as
L(x1, x2, ..., xn; θ) and represents the probability density function fX1X2...Xn(x1, x2, ..., xn; θ).

0.7.2 Likelihood Ratio Tests
Likelihood Ratio Tests are used in hypothesis testing when both the null and
alternative hypotheses are simple. Suppose we have two hypotheses:

• Null Hypothesis: H0 : θ = θ0

• Alternative Hypothesis: H1 : θ = θ1

To decide between these hypotheses, we compare the likelihood functions:

l0 = L(x1, x2, ..., xn; θ0) (likelihood under H0)

l1 = L(x1, x2, ..., xn; θ1) (likelihood under H1)
If l0 is significantly larger than l1, we accept H0. Conversely, if l1 is significantly
larger, we tend to reject H0. The likelihood ratio l0

l1
is used to make the decision.

0.7.3 Likelihood Ratio Test for Simple Hypotheses
Consider a random sample X1, X2, X3, ..., Xn from a distribution with parame-
ter θ. Suppose we want to test between two simple hypotheses:

• Null Hypothesis: H0 : θ = θ0

• Alternative Hypothesis: H1 : θ = θ1

We define the likelihood ratio as:

λ(x1, x2, ..., xn) = L(x1, x2, ..., xn; θ0)
L(x1, x2, ..., xn; θ1)

To perform a Likelihood Ratio Test (LRT), we choose a constant c. We reject
H0 if λ < c and accept it if λ ≥ c. The value of c is determined based on the
desired significance level α.

Example
Let’s consider an example to illustrate how to perform a Likelihood Ratio Test.
We revisit the radar problem, where we observe the random variable X given
by X = θ + W , with W ∼ N(0, σ2 = 1

9 ). We want to test between the following
hypotheses:

• Null Hypothesis: H0 : θ = θ0 = 0

• Alternative Hypothesis: H1 : θ = θ1 = 1

o design a level 0.05 test (α = 0.05) to decide between H0 and H1, we calculate
the likelihood ratio and determine the threshold value c. The decision rule is
then defined based on the observed value of X.
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0.7.4 Generalization to Non-Simple Hypotheses
If the hypotheses are not simple, meaning θ is an unknown parameter, we can
still perform a Likelihood Ratio Test by partitioning the set of possible values
for θ into two disjoint sets S0 and S1. The test involves finding the likelihood
ratio for each possible value of θ and choosing the value that maximizes the
likelihood ratio.

λ(x1, x2, ..., xn) =
supθ∈S0 L(x1, x2, ..., xn; θ)
supθ∈S1 L(x1, x2, ..., xn; θ)

To perform the Likelihood Ratio Test, we compare the likelihood ratio λ to
a threshold value c. If λ < c, we reject H0, and if λ ≥ c, we fail to reject H0.

The threshold value c is determined based on the desired significance level
α. It is chosen such that the probability of rejecting H0 when it is true (Type
I error) is limited to α. In other words, we control the probability of falsely
rejecting H0.
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