Exercises on Determining Interval Estimators

Correction exercice 1. The 95% confidence interval for μ is given by:

$$\bar{X} \pm 1.96 \cdot \frac{\sigma}{\sqrt{n}}$$

where \bar{X} is the sample mean, σ is the known population standard deviation, and n is the sample size. In this case, 1.96 corresponds to the 97.5th percentile of the standard normal distribution.

Correction exercice 2. The 99% confidence interval for μ is given by:

$$\bar{X} \pm 2.576 \cdot \frac{\sigma}{\sqrt{n}}$$

where \bar{X} is the sample mean, σ is the known population standard deviation, and n is the sample size. In this case, 2.576 corresponds to the 99.5th percentile of the standard normal distribution.

Correction exercice 3. The 90% confidence interval for μ is given by:

$$\bar{X} \pm z \cdot \frac{S}{\sqrt{n}}$$

where \overline{X} is the sample mean, S is the sample standard deviation, n is the sample size, and z is the critical value from the t-distribution with n-1 degrees of freedom that corresponds to the desired confidence level.

The general formula for the confidence interval is:

$$\bar{X} \pm z \cdot \frac{S}{\sqrt{n}}$$

Correction exercice 4. The 98% confidence interval for σ^2 is given by:

$$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}}\right)$$

where S^2 is the sample variance, n is the sample size, $\alpha = 0.02$, and $\chi^2_{\alpha/2}$ and $\chi^2_{1-\alpha/2}$ are the $\alpha/2$ and $1-\alpha/2$ percentiles of the chi-squared distribution with n-1 degrees of freedom, respectively.

Correction exercice 5. The 95% confidence interval for the ratio $\frac{\sigma_1^2}{\sigma_2^2}$ is given by:

$$\left(\frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{\alpha/2}}, \frac{S_1^2}{S_2^2} \cdot F_{\alpha/2}\right)$$

where S_1^2 and S_2^2 are the sample variances, n_1 and n_2 are the sample sizes, $\alpha = 0.05$, and $F_{\alpha/2}$ and $F_{1-\alpha/2}$ are the $\alpha/2$ and $1 - \alpha/2$ percentiles of the *F*-distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom, respectively.

Correction exercice 6. The 90% confidence interval for μ is given by:

$$\bar{X} \pm 1.645 \cdot \frac{\sigma}{\sqrt{n}}$$

where \bar{X} is the sample mean, σ is the known population standard deviation, n is the sample size, and 1.645 corresponds to the 95th percentile of the standard normal distribution.

In this context, the confidence interval represents a range of values within which we are 90% confident that the true mean time μ falls. This means that if we were to take many random samples and construct confidence intervals from them, about 90% of those intervals would contain the true mean time.