Exercises on Determining Interval Estimators

Exercice 0.1. Given a random sample X_1, X_2, \ldots, X_n from a normal distribution with an unknown mean μ and known variance σ^2 , construct a 95% confidence interval for μ based on the sample.

Exercice 0.2. Suppose you have a random sample of size n = 50 from a normal distribution with an unknown mean μ and known variance $\sigma^2 = 25$. Calculate a 99% confidence interval for μ .

Exercice 0.3. Consider a random sample of size n = 20 from a normal population with an unknown mean μ and unknown variance σ^2 . Calculate a 90% confidence interval for μ and provide the general formula for the confidence interval.

Exercice 0.4. Given a random sample of size n = 25 from a normal population with an unknown mean μ and an unknown variance σ^2 , construct a 98% confidence interval for the population variance σ^2 .

Exercice 0.5. For a random sample of size n = 30 from a normal population with an unknown mean μ and an unknown variance σ^2 , determine the 95% confidence interval for the ratio of two variances, $\frac{\sigma_1^2}{\sigma_2^2}$.

Exercice 0.6. In an industrial process, the time (in minutes) required to complete a task follows a normal distribution with an unknown mean μ and a known variance of $\sigma^2 = 16$ minutes. A random sample of size n = 15 is taken, and a 90% confidence interval for the mean time μ is needed. Calculate the confidence interval and interpret the result.