
Commande adaptative

3.2. Introduction

D'une point de vue pratique" on regroup€ sous les termes de commande adaptalive un

ensemble de concepts et de techniques utilisés pour l'ajustement automatique et en temps réel des

regulateur mis en Guwe dans la commande d'un système lorsque les paramètres de ce système sont

difficile à détemriner ou variant avec le temps.

La synthèse d'une commande adaptative impose le plus souvent les phases suivantes :

o Specification des performances désiÉes, (temps de réponse" localisation de pôles,

minimisation d'énergie de commande, ...), on cherche. lorsque c'est possible, à les

caractériser par un indice de performances.

o Définition de la structure de commande ou de type de Égulateur qui sera utilise en vue de

réaliser les performances souhaitées.

o Conception du mécanisme d'adaptation qui permetha d'ajuster de façons optimale les

paramètres du regulateur utilisé.

Les taches qui incombent au mécanisme d'adaptation sont les zuivantes :

o Ajustement automatique des régulateurs et optimisation de leurs paramètres en les divers
points de fonctionnement du système.

o Maintenance des performances exigees en cas de variaüon des paramètres du sysème.
o Détection des variations anorrnales des caracteristiques du système.

Le principe de mis en æuvre d'un système de commande adaptative est représenté à la figure

suivante :

consignc

Une approche simplifiee de la commande adaptative peut être effectuée comme dans le cas

des régulateurs à gain priogrammé. Dans ce czrs, les valeurs des paramètres sont ajustees en

fonction de l'évolution de variables caractéristique de l'environnement et du système lui-même.

L'adaptation se fait alors par lecture dans une table prédéfinissant les valeurs de réglage en fonction

des mesures disponible sur l'environnement et le sysGme.
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"zs.Approches de la commande adaptative

Deux Elproches principales existent 1rcur la commande adaptative des systèmes à

paramètres inconnues ou variable dans le temps'

*.. La commende adaptative directg dans laquelle les paramètres du reguldeur sont ajustés

directementetentempsréelàpartirdecomparaisonentroperformancesréeletles
performancesdésirees(c,estlecasenparticulierdelacommandeaoapuliveàmodèlede
référence).

La commande adaptative indirecte, qui suppose une estimation des paramètres du

système par une procédure d'identificalion (c'est le cas de regulateur auto-ajustables)' ce

dernier ÿpe de commande adaptative qui tient compte les caractéristiques d'évolution du

système, est en fait plus utilisé que le précédent'
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Adaptive control of linear systems

The principle of feedback control is to maintain a consistent performance when there
are uncertainties in the system or changes in the setpoints through a feedback con-
troller using the measurements of the system performance, mainly the outputs. Many
controllers are with fixed controller parameters, such as the controllers designed by
normal state feedback control, and H∞ control methods. The basic aim of adaptive
control also is to maintain a consistent performance of a system in the presence of
uncertainty or unknown variation in plant parameters, but with changes in the con-
troller parameters, adapting to the changes in the performance of the control system.
Hence, there is an adaptation in the controller setting subject to the performance of the
closed-loop system. How the controller parameters change is decided by the adaptive
laws, which are often designed based on the stability analysis of the adaptive control
system.

A number of design methods have been developed for adaptive control. Model
Reference Adaptive Control (MRAC) consists of a reference model which pro-
duces the desired output, and the difference between the plant output and the
reference output is then used to adjust the control parameters and the control
input directly. MRAC is often in continuous-time domain, and for deterministic
plants. Self-Tuning Control (STC) estimates system parameters and then computes
the control input from the estimated parameters. STC is often in discrete-time and for
stochastic plants. Furthermore, STC often has a separate identification procedure for
estimation of the system parameters, and is referred to as indirect adaptive control,
while MRAC adapts to the changes in the controller parameters, and is referred to
as direct adaptive control. In general, the stability analysis of direct adaptive con-
trol is less involved than that of indirect adaptive control, and can often be carried
out using Lyapunov functions. In this chapter, we focus on the basic design method
of MRAC.

Compared with the conventional control design, adaptive control is more
involved, with the need to design the adaptation law. MRAC design usually involves
the following three steps:

● Choose a control law containing variable parameters.
● Design an adaptation law for adjusting those parameters.
● Analyse the stability properties of the resulting control system.



7.1 MRAC of first-order systems

The basic design idea can be clearly demonstrated by first-order systems. Consider a
first-order system

ẏ + apy = bpu, (7.1)

where y and u ∈ R are the system output and input respectively, and ap and bp are
unknown constant parameters with sgn(bp) known. The output y is to follow the output
of the reference model

ẏm + amym = bmr. (7.2)

The reference model is stable, i.e., am > 0. The signal r is the reference input. The
design objective is to make the tracking error e = y − ym converge to 0.

Let us first design a Model Reference Control (MRC), that is, the control design
assuming all the parameters are known, to ensure that the output y follows ym.
Rearrange the system model as

ẏ + amy = bp

(

u − ap − am

bp
y

)

and therefore we obtain

ė + ame = bp

(

u − ap − am

bp
y − bm

bp
r

)

:= bp (u − auy − arr) ,

where

ay = ap − am

bp
,

ar = bm

bp
.

If all the parameters are known, the control law is designed as

u = arr + ayy (7.3)

and the resultant closed-loop system is given by

ė + ame = 0.

The tracking error converges to zero exponentially.
One important design principle in adaptive control is the so-called the certainty

equivalence principle, which suggests that the unknown parameters in the control
design are replaced by their estimates. Hence, when the parameters are unknown,
let âr and ây denote their estimates of ar and ay, and the control law, based on the
certainty equivalence principle, is given by

u = ârr + âyy. (7.4)



Note that the parameters ar and ay are the parameters of the controllers, and they
are related to the original system parameters ap and bp, but not the original system
parameters themselves.

The certainty equivalence principle only suggests a way to design the adaptive
control input, not how to update the parameter estimates. Stability issues must be
considered when deciding the adaptive laws, i.e., the way how estimated parameters
are updated. For first-order systems, the adaptive laws can be decided from Lyapunov
function analysis.

With the proposed adaptive control input (7.4), the closed-loop system dynamics
are described by

ė + ame = bp(−ãyy − ãrr), (7.5)

where ãr = ar − âr and ãy = ay − ây. Consider the Lyapunov function candidate

V = 1

2
e2 + |bp|

2γr
ã2

r + |bp|
2γy

ã2
y , (7.6)

where γr and γy are constant positive real design parameters. Its derivative along the
trajectory (7.5) is given by

V̇ = −ame2 + ãr

(

|bp|
˙̃ar

γr
− ebpr

)

+ ãy

(

|bp|
˙̃ay

γy
− ebpy

)

.

If we can set

|bp|
˙̃ar

γr
− ebpr = 0, (7.7)

|bp|
˙̃ay

γy
− ebpy = 0, (7.8)

we have

V̇ = −ame2. (7.9)

Noting that ˙̂ar = −˙̃ar and ˙̂ay = −˙̃ay, the conditions in (7.7) and (7.8) can be satisfied
by setting the adaptive laws as

˙̂ar = −sgn(bp)γrer, (7.10)

˙̂ay = −sgn(bp)γyey. (7.11)

The positive real design parameters γr and γy are often referred to as adaptive gains,
as they can affect the speed of parameter adaptation.

From (7.9) and Theorem 4.2, we conclude that the system is Lyapunov stable
with all the variables e, ãr and ãy bounded, and hence the boundedness of âr and ây.

However, based on the stability theorems introduced in Chapter 4, we cannot
conclude anything about the tracking error e other than its boundedness. In order
to do it, we need to introduce an important lemma for stability analysis of adaptive
control systems.



Lemma 7.1 (Barbalat’s lemma). If a function f (t) : R −→ R is uniformly continuous
for t ∈ [0, ∞), and

∫∞
0 f (t)dt exists, then limt→∞ f (t) = 0.

From (7.9), we can show that
∫ ∞

0
e2(t)dt = V (0) − V (∞)

am
< ∞. (7.12)

Therefore, we have established that e ∈ L2 ∩ L∞ and ė ∈ L∞. Since ė and e are
bounded, e2 is uniformly continuous. Therefore, we can conclude from Barbalat’s
lemma that limt→∞ e2(t) = 0, and hence limt→∞ e(t) = 0.

We summarise the stability result in the following lemma.

Lemma 7.2. For the first-order system (7.1) and the reference model (7.2), the adap-
tive control input (7.4) together with the adaptive laws (7.10) and (7.11) ensures the
boundedness of all the variables in the closed-loop system, and the convergence to
zero of the tracking error.

Remark 7.1. The stability analysis ensures the convergence to zero of the tracking
error, but nothing can be told about the convergence of the estimated parameters. The
estimated parameters are assured to be bounded from the stability analysis. In general,
the convergence of the tracking error to zero and the boundedness of the adaptive
parameters are stability results that we can establish for MRAC. The convergence
of the estimated parameters may be achieved by imposing certain conditions of the
reference signal to ensure the system is excited enough. This is similar to the concept
of persistent excitation for system identification. �

Example 7.1. Consider a first-order system

Gp = b

s + a
,

where b = 1 and a is an unknown constant parameter. We will design an adaptive
controller such that the output of the system follows the output of the reference model

Gm = 1

s + 2
.

We can directly use the result presented in Lemma 7.2, i.e., we use the adaptive
laws (7.10) and (7.11) and the control input (7.4). Since b is known, we only have one
unknown parameter, and it is possible to design a simpler control based on the same
design principle.

From the system model, we have

ẏ + ay = u,

which can be changed to

ẏ + 2y = u − (a − 2)y.



Subtracting the reference model

ẏm + 2ym = r,

we obtain that

ė + 2e = u − ayy − r.

where ay = a − 2. We then design the adaptive law and control input as

˙̂ay = −γyey,

u = âyy + r.

The stability analysis follows the same discussion that leads to Lemma 7.2. Simulation
study has been carried out with a = −1, γ = 10 and r = 1. The simulation results are
shown in Figure 7.1. The figure shows that the estimated parameter converges to the
true value ay = −3. The convergence of the estimated parameters is not guaranteed
by Lemma 7.2. Indeed, some strong conditions on the input or reference signal are
needed to generate enough excitation for the parameter estimation to achieve the
convergence of the estimated parameters in general. �
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Figure 7.1 Simulation results of Example 7.1



7.2 Model reference control

It is clear from MRAC design for first-order systems that an MRC input is designed
first which contains unknown parameters, and the adaptive control input is then
obtained based on the certainty equivalence principle. Hence, MRC design is the
first step for MRAC. Furthermore, MRC itself deserves a brief introduction, as it is
different from the classical control design methods shown in standard undergraduate
texts. In this section, we will start with MRC for systems with relative degree 1, and
then move on to MRC of systems with high-order relative degrees.

Consider an nth-order system with the transfer function

y(s) = kp
Zp(s)

Rp(s)
u(s), (7.13)

where y(s) and u(s) denote the system output and input in frequency domain; kp is the
high frequency gain; and Zp and Rp are monic polynomials with orders of n − ρ and
n respectively with ρ as the relative degree. The reference model is chosen to have
the same relative degree of the system, and is described by

ym(s) = km
Zm(s)

Rm(s)
r(s), (7.14)

where ym(s) is the reference output for y(s) to follow; r(s) is a reference input; and
km > 0 and Zm and Rm are monic Hurwitz polynomials.

Remark 7.2. A monic polynomial is a polynomial whose leading coefficient, the
coefficient of the highest power, is 1. A polynomial is said to be Hurwitz if all its roots
are with negative real parts, i.e., its roots locate in the open left half of the complex
plane. The high-frequency gain is the leading coefficient of the numerator of a transfer
function. �

The objective of MRC is to design a control input u such that the output of the
system asymptotically follows the output of the reference model, i.e., limt→∞ (y(t) −
ym(t)) = 0.

Note that in this chapter, we abuse the notations of y, u and r by using same
notations for the functions in time domain and their Laplace transformed functions
in the frequency domain. It should be clear from the notations that y(s) is the Laplace
transform of y(t) and similarly for u and r.

To design MRC for systems with ρ = 1, we follow a similar manipulation to the
first-order system by manipulating the transfer functions. We start with

y(s)Rp(s) = kpZp(s)u(s)

and then

y(s)Rm(s) = kpZp(s)u(s) − (Rp(s) − Rm(s))y(s).



Note that Rp(s) − Rm(s) is a polynomial with order n − 1, and Rm(s) − Rp(s)
Zm(s) is a proper

transfer function, as Rp(s) and Rm(s) are monic polynomials. Hence, we can write

y(s)Rm(s) = kpZm(s)
(

Zp(s)

Zm(s)
u(s) + Rm(s) − Rp(s)

Zm(s)
y(s)

)

.

If we parameterise the transfer functions as

Zp(s)

Zm(s)
= 1 − θT

1 α(s)

Zm(s)
,

Rm(s) − Rp(s)

Zm(s)
y(s) = −θ

T
2 α(s)

Zm(s)
y(s) − θ3,

where θ1 ∈ R
n−1, θ2 ∈ R

n−1 and θ3 ∈ R are constants and

α(s) = [sn−2, . . . , 1]T ,

we obtain that

y(s) = kp
Zm(s)

Rm(s)

(

u(s) − θT
1 α(s)

Zm(s)
u(s) − θT

2 α(s)

Zm(s)
y(s) − θ3y(s)

)

. (7.15)

Hence, we have the dynamics of tracking error given by

e1(s) = kp
Zm(s)

Rm(s)

(

u(s) − θT
1 α(s)

Zm(s)
u(s) − θT

2 α(s)

Zm(s)
y(s) − θ3y(s) − θ4r

)

, (7.16)

where e1 = y − ym and θ4 = km
kp

.
The control input for MRC is given by

u(s) = θT
1 α(s)

Zm(s)
u(s) + θT

2 α(s)

Zm(s)
y + θ3y + θ4r(s)

:= θTω, (7.17)

where

θT = [θT
1 , θT

4 , θ3, θ4],

ω = [ωT
1 ,ωT

2 , y, r]T ,

with

ω1 = α(s)

Zm(s)
u,

ω2 = α(s)

Zm(s)
y.



Remark 7.3. The control design shown in (7.17) is a dynamic feedback con-

troller. Each element in the transfer matrix
α(s)

Zm(s)
is strictly proper, i.e.,

with relative degree greater than or equal to 1. The total number of parameters in
θ equals 2n. �

Lemma 7.3. For the system (7.13) with relative degree 1, the control input (7.17)
solves MRC problem with the reference model (7.14) and limt→∞ (y(t) − ym(t)) = 0.

Proof. With the control input (7.17), the closed-loop dynamics are given by

e1(s) = kp
Zm(s)

Rm(s)
ε(s),

where ε(s) denotes exponentially convergent signals due to non-zero initial values.
The reference model is stable, and then the track error e1(t) converges to zero
exponentially. �

Example 7.2. Design MRC for the system

y(s) = s + 1

s2 − 2s + 1
u(s)

with the reference model

ym(s) = s + 3

s2 + 2s + 3
r(s).

We follow the procedures shown early to obtain the MRC control. From the transfer
function of the system, we have

y(s)(s2 + 2s + 3) = (s + 1)u(s) + (4s + 2)y(s),

which leads to

y(s) = s + 3

s2 + 2s + 3

(
s + 1

s + 3
u(s) + 4s + 2

s + 3
y(s)

)

= s + 3

s2 + 2s + 3

(

u(s) − 2

s + 3
u(s) − 10

s + 3
y(s) + 4y(s)

)

.

Subtracting it by the reference model, we have

e1(s) = s + 3

s2 + 2s + 3

(

u(s) − 2

s + 3
u(s) − 10

s + 3
y(s) + 4y(s) − r(s)

)

,

which leads to the MRC control input

u(s) = 2

s + 3
u(s) + 10

s + 3
y(s) − 4y(s) + r(s)

= [2 10 − 4 1][ω1(s) ω2(s) y(s) r(s)]T ,



where

ω1(s) = 1

s + 3
u(s),

ω2(s) = 1

s + 3
y(s).

Note that the control input in the time domain is given by

u(s) = [2 10 − 4 1][ω1(t) ω2(t) y(t) r(t)]T ,

where
ω̇1 = −3ω1 + u,

ω̇2 = −3ω2 + y.

�
For a system with ρ > 1, the input in the same format as (7.17) can be obtained.

The only difference is that Zm is of order n − ρ < n − 1. In this case, we let P(s) be a
monic and Hurwitz polynomial with order ρ − 1 so that Zm(s)P(s) is of order n − 1.
We adopt a slightly different approach from the case of ρ = 1.

Consider the identity

y(s) = Zm(s)

Rm(s)

(
Rm(s)P(s)

Zm(s)P(s)
y(s)

)

= Zm(s)

Rm(s)

(
Q(s)Rp(s) +�(s)

Zm(s)P(s)
y(s)

)

. (7.18)

Note that the second equation in (7.18) follows from the identity

Rm(s)P(s) = Q(s)Rp(s) +�(s),

where Q(s) is a monic polynomial with order n − ρ − 1, and �(s) is a polynomial
with order n − 1. In fact Q(s) can be obtained by dividing Rm(s)P(s) by Rp(s) using
long division, and�(s) is the remainder of the polynomial division. From the transfer
function of the system, we have

Rp(s)y(s) = kpZp(s)u(s).

Substituting it into (7.18), we have

y(s) = kp
Zm(s)

Rm(s)

(
Q(s)Zp(s)

Zm(s)P(s)
u + k−1

p �(s)

Zm(s)P(s)
y(s)

)

.

Similar to the case for ρ = 1, if we parameterise the transfer functions as

Q(s)Zp(s)

Zm(s)P(s)
= 1 − θT

1 α(s)

Zm(s)P(s)
,

k−1
p �

Zm(s)P(s)
= − θT

2 α(s)

Zm(s)P(s)
− θ3



where θ1 ∈ R
n−1 and θ2 ∈ R

n−1 and θ3 ∈ R are constants and

α(s) = [sn−2, . . . , 1]T ,

we obtain that

y(s) = kp
Zm(s)

Rm(s)

(

u(s) − θT
1 α(s)

Zm(s)P(s)
u(s) − θT

2 α(s)

Zm(s)P(s)
y(s) − θ3y(s)

)

.

Hence, we have the dynamics of tracking error given by

e1(s) = kp
Zm(s)

Rm(s)

(

u(s) − θT
1 α(s)

Zm(s)P(s)
u(s) − θT

2 α(s)

Zm(s)P(s)
y(s) − θ3y(s) − θ4r

)

,

where e1 = y − ym and θ4 = km
kp

. The control input is designed as

u = θT
1 α(s)

Zm(s)P(s)
u + θT

2 α(s)

Zm(s)P(s)
y + θ3y + θ4r

:= θTω (7.19)

with the same format as (7.17) except

ω1 = α(s)

Zm(s)P(s)
u,

ω2 = α(s)

Zm(s)P(s)
y.

Remark 7.4. The final control input is in the same format as shown for the case
ρ = 1. The filters for w1 and w2 are in the same order as in the case for ρ = 1, as the
order of Zm(s)P(s) is still n − 1. �

Lemma 7.4. For the system (7.13) with relative degreeρ > 1, the control input (7.19)
solves MRC problem with the reference model (7.14) and limt→∞ (y(t) − ym(t)) = 0.

The proof is the same as the proof for Lemma 7.3.

Example 7.3. Design MRC for the system

y(s) = 1

s2 − 2s + 1
u

with the reference model

ym(s) = 1

s2 + 2s + 3
r.

The relative degree of the system is 2. We set P = s + 1. Note that

(s2 + 2s + 3)(s + 1) = (s + 5)(s2 − 2s + 1) + (14s − 2).



From the reference model, we have

y(s) = 1

s2 + 2s + 3

(
(s2 + 2s + 3)(s + 1)

s + 1
y(s)

)

= 1

s2 + 2s + 3

(
(s + 5)(s2 − 2s + 1)y(s) + (14s − 2)y(s)

s + 1

)

= 1

s2 + 2s + 3

(
(s + 5)u(s) + (14s − 2)y(s)

s + 1

)

= 1

s2 + 2s + 3

(

u(s) + 4

s + 1
u(s) − 16

1

s + 1
y(s) + 14y(s)

)

.

The dynamics of the tacking error are given by

e1(s) = 1

s2 + 2s + 3

(

u(s) + 4

s + 1
u(s) − 16

1

s + 1
y(s) + 14y(s) − r(s)

)

.

We can then design the control input as

u = [−1, −16, 14, 1][ω1, ω2, y, r]T

with

ω1 = 1

s + 1
u,

ω2 = 1

s + 1
y.

�

7.3 MRAC of linear systems with relative degree 1

Adaptive control deals with uncertainties in terms of unknown constant parameters.
It may be used to tackle some changes or variations in model parameters in adaptive
control application, but the stability analysis will be carried under the assumption the
parameters are constants. There are other common assumptions for adaptive control
which are listed below:

● the known system order n
● the known relative degree ρ
● the minimum phase of the plant
● the known sign of the high frequency gain sgn(kp)

In this section, we present MRAC design for linear systems with relative
degree 1.

Consider an nth-order system with the transfer function

y(s) = kp
Zp(s)

Rp(s)
u(s), (7.20)
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where y(s) and u(s) denote the system output and input in frequency domain; kp is
the high frequency gain; and Zp and Rp are monic polynomials with orders of n − 1
and n respectively. This system is assumed to be minimum phase, i.e., Zp(s) is a
Hurwitz polynomial, and the sign of the high-frequency gain, sgn(kp), is known. The
coefficients of the polynomials and the value of kp are constants and unknown. The
reference model is chosen to have the relative degree 1 and strictly positive real, and
is described by

ym(s) = km
Zm(s)

Rm(s)
r(s), (7.21)

where ym(s) is the reference output for y(s) to follow, r(s) is a reference input, and
Zm(s) and Rm(s) are monic polynomials and km > 0. Since the reference model is
strictly positive real, Zm and Rm are Hurwitz polynomials.

MRC shown in the previous section gives the control design in (7.17). Based on
the certainty equivalence principle, we design the adaptive control input as

u(s) = θ̂Tω, (7.22)

where θ̂ is an estimate of the unknown vector θ ∈ R
2n, and ω is given by

ω = [ωT
1 ,ωT

2 , y, r]T

with

ω1 = α(s)

Zm(s)
u,

ω2 = α(s)

Zm(s)
y.

With the designed adaptive control input, it can be obtained, from the tracking
error dynamics shown in (7.16), that

e1(s) = kp
Zm(s)

Rm(s)
(θ̂Tω − θTω)

= km
Zm(s)

Rm(s)

(

− kp

km
θ̃Tω

)

(7.23)

where θ̃ = θ − θ̂ .
To analyse the stability using a Lyapunov function, we put the error dynamics in

the state space form as

ė = Ame + bm

(
− kp

km
θ̃Tω

)

e1 = cT
me

(7.24)

where (Am, bm, cm) is a minimum state space realisation of km
Zm(s)
Rm(s) , i.e.,

cT
m(sI − Am)−1bm = km

Zm(s)

Rm(s)
.



Since (Am, bm, cm) is a strictly positive real system, from Kalman–Yakubovich lemma
(Lemma 5.4), there exist positive definite matrices P and Q such that

AT
mPm + PmAm = −Qm, (7.25)

Pmbm = cm. (7.26)

Define a Lyapunov function candidate as

V = 1

2
eT Pme + 1

2

∣
∣
∣
∣

kp

km

∣
∣
∣
∣ θ̃

T	−1θ̃ ,

where 	 ∈ R
2n is a positive definite matrix. Its derivative is given by

V̇ = 1

2
eT (AT

mPm + PmAm)e + eT Pmbm

(

− kp

km
θ̃Tω

)

+
∣
∣
∣
∣

kp

km

∣
∣
∣
∣ θ̃

T	−1 ˙̃
θ

Using the results from (7.25) and (7.26), we have

V̇ = −1

2
eT Qme + e1

(

− kp

km
θ̃Tω

)

+
∣
∣
∣
∣

kp

km

∣
∣
∣
∣ θ̃

T	−1 ˙̃
θ

= −1

2
eT Qme +

∣
∣
∣
∣

kp

km

∣
∣
∣
∣ θ̃

T
(
	−1 ˙̃

θ − sgn(kp)e1ω
)
.

Hence, the adaptive law is designed as

˙̂
θ = −sgn(kp)	e1ω, (7.27)

which results in

V̇ = −1

2
eT Qme.

We can now conclude the boundedness of e and θ̂ . Furthermore it can be shown that
e ∈ L2 and ė1 ∈ L∞. Therefore, from Barbalat’s lemma we have limt→∞ e1(t) = 0.
The boundedness of other system state variables can be established from the minimum-
phase property of the system.

We summarise the stability analysis for MRAC of linear systems with relative
degree 1 in the following theorem.

Theorem 7.5. For the first-order system (7.20) and the reference model (7.21), the
adaptive control input (7.22) together with the adaptive law (7.27) ensures the bound-
edness of all the variables in the closed-loop system, and the convergence to zero of
the tracking error.

Remark 7.5. The stability result shown in Theorem 7.5 only guarantees the conver-
gence of the tracking error to zero, not the convergence of the estimated parameters.
In the stability analysis, we use Kalman–Yakubovich lemma for the definition of
Lyapunov function and the stability proof. That is why we choose the reference model
to be strictly positive real. From the control design point of view, we do not need
to know the actual values of Pm and Qm, as long as they exist, which is guaranteed



by the selection of a strictly positive real model. Also it is clear from the stability
analysis, that the unknown parameters must be constant. Otherwise, we would not

have ˙̂
θ = − ˙̃

θ . �

7.4 MRAC of linear systems with high relatives

In this section, we will introduce adaptive control design for linear systems with their
relative degrees higher than 1. Similar to the case for relative degree 1, the certainty
equivalence principle can be applied to the control design, but the designs of the
adaptive laws and the stability analysis are much more involved, due to the higher
relative degrees. One difficulty is that there is not a clear choice of Lyapunov function
candidate as in the case of ρ = 1.

Consider an nth-order system with the transfer function

y(s) = kp
Zp(s)

Rp(s)
u(s), (7.28)

where y(s) and u(s) denote the system output and input in frequency domain, kp is
the high frequency gain, Zp and Rp are monic polynomials with orders of n − ρ and
n respectively, with ρ > 1 being the relative degree of the system. This system is
assumed to be minimum phase, i.e., Zp(s) is Hurwitz polynomial, and the sign of the
high-frequency gain, sgn(kp), is known. The coefficients of the polynomials and the
value of kp are constants and unknown. The reference model is chosen as

ym(s) = km
Zm(s)

Rm(s)
r(s) (7.29)

where ym(s) is the reference output for y(s) to follow; r(s) is a reference input; and
Zm(s) and Rm(s) are monic polynomials with orders n − ρ and n respectively and
km > 0. The reference model (7.29) is required to satisfy an additional condition that
there exists a monic and Hurwitz polynomial P(s) of order n − ρ − 1 such that

ym(s) = km
Zm(s)P(s)

Rm(s)
r(s) (7.30)

is strictly positive real. This condition also implies that Zm and Rm are Hurwitz
polynomials.

MRC shown in the previous section gives the control design in (7.19). We design
the adaptive control input, again using the certainty equivalence principle, as

u = θ̂Tω, (7.31)

where θ̂ is an estimate of the unknown vector θ ∈ R
2n, and ω is given by

ω = [ωT
1 ,ωT

2 , y, r]T
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with

ω1 = α(s)

Zm(s)P(s)
u,

ω2 = α(s)

Zm(s)P(s)
y.

The design of adaptive law is more involved, and we need to examine the dynamics
of the tacking error, which are given by

e1 = kp
Zm

Rm
(u − θTφ)

= km
ZmP(s)

Rm

(
k(uf − θTφ)

)
, (7.32)

where

k = kp

km
, uf = 1

P(s)
u and φ = 1

P(s)
ω.

An auxiliary error is constructed as

ε = e1 − km
ZmP(s)

Rm

(
k̂(uf − θ̂Tφ)

)
− km

ZmP(s)

Rm

(
εn2

s

)
, (7.33)

where k̂ is an estimate of k , n2
s = φTφ + u2

f . The adaptive laws are designed as

˙̂
θ = −sgn(bp)	εφ, (7.34)

˙̂k = γ ε(uf − θ̂Tφ). (7.35)

With these adaptive laws, a stability result can be obtained for the boundedness of
parameter estimates and the convergence of the tracking error. For the completeness,
we state the theorem below without giving the proof.

Theorem 7.6. For the system (7.28) and the reference model (7.29), the adaptive
control input (7.31) together with the adaptive laws (7.34) and (7.35) ensures the
boundedness of all the variables in the closed-loop system, and the convergence to
zero of the tracking error.


