Exercices corrections

Correction exercice .1. (*Linear Regression*) The linear model y = mx + b can be solved using the least squares method. The formulas for m and b are:

$$m = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$
$$b = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{n(\Sigma x^2) - (\Sigma x)^2}$$

where n is the number of data points, (x_i, y_i) . Substitute the given values:

$$n = 5, \Sigma x = 15, \Sigma y = 35, \Sigma x^2 = 55, \Sigma xy = 135$$
$$m = \frac{(5 \times 135) - (15 \times 35)}{(5 \times 55) - (15)^2} = \frac{375}{20} = 18.75$$
$$b = \frac{(35 \times 55) - (15 \times 135)}{(5 \times 55) - (15)^2} = \frac{1925}{20} = 96.25$$

Therefore, the linear model is y = 18.75x + 96.25.

Correction exercice .2. (Polynomial Regression) The polynomial model $y = a_0 + a_1x + a_2x^2$ can be solved using the least squares method. The formulas for a_0, a_1 , and a_2 are obtained by solving a system of linear equations. The system of equations is:

$$a_{0} + a_{1}(1) + a_{2}(1)^{2} = 2$$

$$a_{0} + a_{1}(2) + a_{2}(2)^{2} = 5$$

$$a_{0} + a_{1}(3) + a_{2}(3)^{2} = 10$$

$$a_{0} + a_{1}(4) + a_{2}(4)^{2} = 17$$

$$a_{0} + a_{1}(5) + a_{2}(5)^{2} = 26$$

Solving this system gives:

$$a_0 = 0.5, \quad a_1 = 0, \quad a_2 = 1$$

Therefore, the polynomial model is $y = 0.5 + x^2$.

Correction exercice .3. (Exponential Regression) The exponential model $y = ae^{bx}$ can be solved using the least squares method. Take the natural logarithm of both sides to linearize the model:

$$\ln(y) = \ln(a) + bx$$

This is now in the form $\ln(y) = \alpha + \beta x$, which is a linear model. Apply linear regression to find the values of α and β . Solving for a and b gives:

$$a = e^{\alpha}, \quad b = \beta$$

Substitute the given values:

$$\alpha \approx 0.69, \quad \beta \approx 0.69$$

Therefore, the exponential model is $y \approx e^{0.69} e^{0.69x}$.

Correction exercice .4. (Multiple Linear Regression) The multiple linear regression model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ can be solved using the least squares method. The formulas for β_0, β_1 , and β_2 are obtained by solving a system of linear equations. The system of equations is:

$$\beta_0 + \beta_1(1) + \beta_2(2) = 5$$

$$\beta_0 + \beta_1(2) + \beta_2(4) = 8$$

$$\beta_0 + \beta_1(3) + \beta_2(6) = 10$$

$$\beta_0 + \beta_1(4) + \beta_2(8) = 12$$

$$\beta_0 + \beta_1(5) + \beta_2(10) = 14$$

Solving this system gives:

$$\beta_0 = 1, \quad \beta_1 = 2, \quad \beta_2 = 1$$

Therefore, the multiple linear regression model is $y = 1 + 2x_1 + x_2$.

Solutions to Exercises on Characteristics of an Estimator

Correction exercice .5. (Bias, Mean Squared Error, and Convergence)

1. To calculate the bias of $\hat{\mu}$, use the following formula:

$$Bias(\hat{\mu}) = E(\hat{\mu}) - \mu$$

If $\hat{\mu}$ is unbiased, the bias should equal zero.

2. To calculate the mean squared error (MSE) of $\hat{\sigma}^2$, use the following formula:

$$MSE(\hat{\sigma}^2) = E\left((\hat{\sigma}^2 - \sigma^2)^2\right)$$

3. To show that $\hat{\theta}_n$ converges in probability to θ as n approaches infinity, you can use the definition of convergence in probability:

$$\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| < \epsilon) = 1, \text{ for all } \epsilon > 0$$

Correction exercice .6. (Fisher Information and Cramer-Rao Bound)

- 1. To derive the Fisher information $I(\theta)$ for the parameter θ , you need to find the second derivative of the log-likelihood function with respect to θ .
- 2. The Cramer-Rao Lower Bound (CRLB) for the variance of any unbiased estimator of θ is given by:

$$Var(\hat{\theta}) \ge \frac{1}{nI(\theta)}$$

Correction exercice .7. (Efficiency)

1. Calculate the efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ using the formula:

$$Efficiency(\hat{\theta}_1, \hat{\theta}_2) = \frac{Var(\hat{\theta}_2)}{Var(\hat{\theta}_1)}$$

An estimator with higher efficiency is more efficient.

Correction exercice .8. (Completeness)

1. A sufficient statistic T is complete if, for any measurable function g(t), the expectation of g(T) is zero only if g(t) is zero with probability one:

$$E[g(T)] = 0 \Rightarrow P(g(T) = 0) = 1$$

To show that a statistic is complete, you can use the definition and properties of completeness.

2. To find a statistic that is minimal sufficient but not complete, consider a distribution where minimal sufficiency is achieved, but the distribution itself does not meet the completeness criterion. You can explore different probability distributions to illustrate this.