Exercices

Exercice .1. (*Linear Regression*) Consider the following data points:

- 1. Fit a linear model y = mx + b using the least squares method.
- 2. Find the values of m and b that minimize the sum of squared differences between the observed and predicted values of y.

Exercice .2. (Polynomial Regression)

Given the data points:

- 1. Fit a polynomial model $y = a_0 + a_1x + a_2x^2$ using the least squares method.
- 2. Determine the coefficients a_0, a_1 , and a_2 that minimize the sum of squared differences.

Exercice .3. (Exponential Regression)

Given the data points:

(1, 2), (2, 4), (3, 8), (4, 16), (5, 32)

- 1. Fit an exponential model $y = ae^{bx}$ using the least squares method.
- 2. Find the values of a and b that minimize the sum of squared differences.

Exercice .4. (Multiple Linear Regression)

Consider the dataset with three variables:

(1, 2, 5), (2, 4, 8), (3, 6, 10), (4, 8, 12), (5, 10, 14)

- 1. Fit a multiple linear regression model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ using the least squares method.
- 2. Find the coefficients β_0, β_1 , and β_2 that minimize the sum of squared differences.

Exercice .5. (Bias, Mean Squared Error, and Convergence)

- 1. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with unknown mean μ and variance σ^2 . Define an estimator $\hat{\mu}$ for μ . Calculate the bias of $\hat{\mu}$ and determine if it's an unbiased estimator.
- 2. Given a random variable X with known mean μ and variance σ^2 , define the estimator $\hat{\sigma}^2$ for σ^2 . Calculate the mean squared error of $\hat{\sigma}^2$.
- 3. Consider a sequence of estimators $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_n$ for a parameter θ . Show that $\hat{\theta}_n$ converges in probability to θ as n approaches infinity.

Exercice .6. (Fisher Information, Cramer-Rao Bound, Efficiency)

- 1. Given a random sample X_1, X_2, \ldots, X_n from a distribution with probability density function $f(x; \theta)$, derive the Fisher information $I(\theta)$ for the parameter θ .
- For a given parameter θ, compute the Cramer-Rao Lower Bound (CRLB) for the variance of any unbiased estimator of θ, based on the Fisher information obtained in the previous exercise.
- 3. Suppose you have two unbiased estimators, $\hat{\theta}_1$ and $\hat{\theta}_2$, for the same parameter θ . Calculate the efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$, and determine which estimator is more efficient.

Exercice .7. (*Efficiency*) Suppose you have two unbiased estimators, $\hat{\theta}_1$ and $\hat{\theta}_2$, for the same parameter θ . Calculate the efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$, and determine which estimator is more efficient.

Exercice .8. (Completeness)

- 1. Show that a random sample X_1, X_2, \ldots, X_n from a distribution with a parameter θ has a complete sufficient statistic.
- 2. Given a continuous distribution with an unknown parameter θ , find a statistic that is minimal sufficient but not complete.