Elliptic Curves Work Sheet 01

Exercise 1. Fix a non-zero homogeneous polynomial

$$F(x, y, z) = \sum_{i=0}^{3} \sum_{j=0}^{3-i} a_{ij} x^{3-i-j} y^{i} z^{j}$$

of degree 3 and let C be the plane cubic curve defined by F = 0. For $P = [1:0:0] \in \mathbb{P}^2$, show that the following statements hold.

(1) $P \in C$ if and only if $a_{00} = 0$.

(2) *P* is a singular point of *C* if and only if $a_{00} = a_{10} = a_{01} = 0$.

③ *P* is a triple point of *C* if and only if

$$a_{00} = a_{10} = a_{01} = a_{11} = a_{20} = a_{02} = 0.$$

Exercise 2. Find the values $a \in \mathbb{C}$ for which the lines of equations

$$ay - z + 3ix = 0$$
, $-iax + y - iz = 0$, $3iz + 5x + y = 0$

of $\mathbb{P}^2(\mathbb{C})$ are concurrent.

Exercise 3. Show that the points

$$[1, 2, 2], [3, 1, 4], [2, -1, 2]$$

of the real projective plane are collinear, and find an equation of the line containing them.