
Elliptic Curves

In this Chapter we summarize the main aspects of the theory of el-
liptic curves1. Unfortunately, we will not be able to provide many of
the proofs, because they are beyond the scope of this course.

2.1. Why elliptic curves?

A Diophantine equation is an equation given by a polynomial with
integer coefficients, i.e.:

f(x1, x2, . . . , xr) = 0(2.1)

with f(x1, . . . , xr) ∈ Z[x1, . . . , xr]. Since antiquity, many mathe-
maticians have studied the solutions in integers of Diophantine equa-
tions that arise from a variety of problems in number theory, e.g.
y2 = x3−n2x is the Diophantine equation related to the study of the
congruent number problem (see Example 1.1.2).

Since we would like to systematically study the integer solutions
of Diophantine equations, we ask ourselves three basic questions:

(a) Can we determine if Eq. (2.1) has any integral solutions,
xi ∈ Z, or rational solutions, xi ∈ Q?

(b) If so, can we find any of the integral or rational solutions?

1The contents of this chapter are largely based on the article [Loz05], in Spanish.
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18 2. Elliptic Curves

(c) Finally, can we find all solutions and prove that we have
found all of them?

The first question was proposed by David Hilbert: to devise a
process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.
This was Hilbert’s tenth problem, out of 23 fundamental questions
that he proposed to the mathematical community during the Second
International Congress of Mathematicians in Paris, in the year 1900.
Surprisingly, in 1970, Matiyasevich, Putnam and Robinson discovered
that there is no such general algorithm that decides whether equation
(2.1) has integer solutions (see [Mat93]). However, if we restrict our
attention to certain particular cases, then we can answer questions
(a), (b) and (c) posed above. The most significant advances have
been obtained in equations with one and two variables:

• Polynomials in one variable:

f(x) = a0x
n + a1x

n−1 + . . .+ an = 0

with ai ∈ Z. This case is fairly simple. The following crite-
rion determines how to search for rational or integral roots
of a polynomial: if pq ∈ Q is a solution of f(x) = 0 then an
is divisible by p and a0 is divisible by q.

• Linear equations in two variables:

ax+ by = d

with a, b, d ∈ Z and ab 6= 0. Clearly, this type of equa-
tion always has an infinite number of rational solutions. As
for integral solutions, Euclid’s algorithm (to find gcd(a, b))
determines if there are solutions x, y ∈ Z and, if so, pro-
duces all solutions. In particular, the equation has integral
solutions if and only if d is divisible by gcd(a, b).

• Quadratic equations (conics):

ax2 + bxy + cy2 + dx+ ey = f with a, b, c, d, e, f ∈ Z.

Finding integral and rational points on a conic is a classi-
cal problem. Legendre’s criterion determines whether there
are rational solutions: a conic C has rational solutions if
and only if C has points over Qp, the p-adics, for all primes

http://www.gap-system.org/~history/Biographies/Hilbert.html
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p ≥ 2 (see Appendix D for a brief introduction on the p-
adics). Essentially, Legendre’s criterion says that the conic
has rational solutions if and only if there are solutions mod-
ulo pn for all primes p and all n ≥ 1 but, in practice, one
only needs to check this for a finite number of primes that
depends on the coefficients of the conic.

If C has rational points, and we have found at least
one point, then we can find all the rational solutions using
a stereographic projection (see Exercise 2.11.2). The inte-
gral points on C, however, are much more difficult to find.
The problem is equivalent to finding integral solutions to
Pell’s equation x2−Dy2 = 1. There are several methods to
solve Pell’s equation. For example, one can use continued
fractions (certain convergents x

y of the continued fraction
for
√
D are integral solutions (x, y) of Pell’s equation; see

Exercise 2.11.2).

• Cubic equations:

aX3 + bX2Y + cXY 2 +dY 3 + eX2 + fXY + gY 2 +hX + jY +k = 0.

A cubic equation in two variables may have no rational solu-
tions, only 1 rational solution, a finite number of solutions,
or infinitely many solutions. Unfortunately, we do not know
any algorithm that yields all rational solutions of a cubic
equation although there are conjectural algorithms. In this
chapter we will concentrate on this type of equation: a non-
singular cubic, i.e. no self-intersections or pinches, with one
rational point (which is, by definition, an elliptic curve).

• Higher degree. Typically, curves defined by an equation of
degree ≥ 4 have a genus ≥ 2 (but some equations of degree
4 have genus 1, see Example 2.2.5 and Exercise 2.11.4). The
genus is an invariant that classifies curves according to their
topology. Briefly: if we consider a curve as defined over C,
then C(C) may be considered as a surface over R and the
genus of C counts the number of holes in the surface. For ex-
ample P1(C) has no holes and g = 0 (the projective plane is
homeomorphic to a sphere), and an elliptic curve has genus
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1 (homeomorphic to a torus, see Theorem 3.2.5). Surpris-
ingly, the genus of a curve is intimately related with the
arithmetic of its points. More precisely, Louis Mordell con-
jectured that a curve C of genus ≥ 2 can only have a finite
number of rational solutions. The conjecture was proved by
Faltings in 1983.

2.2. Definition

Definition 2.2.1. An elliptic curve over Q is a smooth cubic projec-
tive curve E defined over Q, with at least one rational point O ∈ E(Q)
that we call the origin.

In other words, an elliptic curve is a curve E in the projective
plane (see Appendix C) given by a cubic polynomial F (X,Y, Z) = 0
with rational coefficients, i.e.

F (X,Y, Z) = aX3 + bX2Y + cXY 2 + dY 3(2.2)

+eX2Z + fXY Z + gY 2Z

+hXZ2 + jY Z2 + kZ3 = 0,

with coefficients a, b, c, . . . ∈ Q, and such that E is smooth, i.e. the
tangent vector

(
∂F
∂X (P ), ∂F∂Y (P ), ∂F∂Z (P )

)
does not vanish at any P ∈ E

(see Appendix C.5 for a brief introduction to singularities, and non-
singular or smooth curves). If the coefficients a, b, c, . . . are in a field
K, then we say that E is defined over K (and write E/K).

Even though the fact that E is a projective curve is crucial, we
usually consider just affine charts of E, e.g. those points of the form
{[X,Y, 1]}, and study instead the affine curve given by

aX3 + bX2Y + cXY 2 + dY 3(2.3)

+eX2 + fXY + gY 2 + hX + jY + k = 0

but with the understanding that in this new model we may have left
out some points of E at infinity (i.e. those points [X,Y, 0] satisfying
Eq. 2.2).

In general, one can find a change of coordinates that simplifies
Eq. 2.3 enormously:

http://www.gap-system.org/~history/Biographies/Mordell.html
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Proposition 2.2.2. Let E be an elliptic curve, given by Eq. 2.2,
defined over a field K of characteristic different from 2 or 3. Then
there exists a curve Ê given by

zy2 = x3 +Axz2 +Bz3, A,B ∈ K with 4A3 + 27B2 6= 0

and an invertible change of variables ψ : E → Ê of the form:

ψ([X,Y, Z]) =
[
f1(X,Y, Z)
g1(X,Y, Z)

,
f2(X,Y, Z)
g2(X,Y, Z)

,
f3(X,Y, Z)
g3(X,Y, Z)

]
where fi and gi are polynomials with coefficients in K, for i = 1, 2, 3,
and the origin O is sent to the point [0, 1, 0] of Ê, i.e. ψ(O) = [0, 1, 0].

The existence of such a change of variables is a consequence of
the Riemann-Roch theorem of algebraic geometry (for a proof of the
proposition see [Sil86], Chapter III.3). In [SiT92], Ch. I. 3, one can
find an explicit method to find the change of variables ψ : E → Ê.
See also pages 46-49 of [Mil06].

A projective equation of the form zy2 = x3 + Axz2 + Bz3, or
y2 = x3+Ax+B in affine coordinates, is called aWeierstrass equation.
From now on, we will often work with an elliptic curve in this form.
Notice that a curve E given by a Weierstrass equation y2 = x3 +Ax+
B is non-singular if and only if 4A3 + 27B2 6= 0, and it has a unique
point at infinity, namely [0, 1, 0], which we shall call the origin O or
the point at infinity of E.

Sometimes we shall use a more general Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ Q (we will explain the funky choice of notation for the
coefficients later), but most of the time we will work with equations
of the form y2 = x3 + Ax + B. It is easy to come up with a change
of variables from one form to the other (see Exercise 2.11.3).

Example 2.2.3. Let d ∈ Z, d 6= 0 and let E be the elliptic curve
given by the cubic equation:

X3 + Y 3 = dZ3

with O = [1,−1, 0]. The reader should verify that E is a smooth
curve. We wish to find a Weierstrass equation for E and, indeed, one
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can find a change of variables ψ : E → Ê given by:

ψ([X,Y, Z]) = [12dZ, 36d(X − Y ), X + Y ] = [x, y, z]

such that zy2 = x3− 432d2z3. The map ψ is invertible, ψ−1 : Ê → E

is:

ψ−1([x, y, z]) =
[

36dz + y

72d
,

36dz − y
72d

,
x

12d

]
.

In affine coordinates, the change of variables is going from X3 +Y 3 =
d to the curve y2 = x3 − 432d2:

ψ(X,Y ) =
(

12d
X + Y

,
36d(X − Y )
X + Y

)
,

ψ−1(x, y) =
(

36d+ y

6x
,

36d− y
6x

)
.

Definition 2.2.4. Let E : f(x, y) = 0 be an elliptic curve with origin
O, and let E′ : g(X,Y ) = 0 be an elliptic curve with origin O′. We
say that E and E′ are isomorphic over Q if there is an invertible
change of variables ψ : E → E′, defined by rational functions with
coefficients in Q, such that ψ(O) = O′.

Example 2.2.5. Sometimes, a curve given by a quartic polynomial
can be isomorphic over Q to another curve given by a cubic polyno-
mial. For instance, consider the curves

C/Q : V 2 = U4 + 1 and E/Q : y2 = x3 − 4x.

The map ψ : C → E given by:

ψ(U, V ) =
(

2(V + 1)
U2

,
4(V + 1)
U3

)
is an invertible rational map, defined over Q, that sends (0, 1) to
O, and ψ(0,−1) = (0, 0). See Exercise 2.11.4. More generally, any
quartic

C : V 2 = aU4 + bU3 + cU2 + dU + q2,

for some a, b, c, d, q ∈ Z, is isomorphic over Q to a curve of the form
E : y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6, also defined over Q. The
isomorphism is given in [Was08], Theorem 2.17, p. 37.
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2.3. The group structure on E(Q)

Let E be an elliptic curve over Q given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Q.

With a change of variables (x, y) 7→ (u−2x, u−3y) we can find the
equation of an elliptic curve isomorphic to E given by

y2 + (a1u)xy + (a3u
3)y = x3 + (a2u

2)x2 + (a4u
4)x+ (a6u

6)

with coefficients aiui ∈ Z, for i = 1, 2, 3, 4, 6. By the way, this is one
of the reasons for the peculiar numbering of the coefficients ai.

Example 2.3.1. Let E be given by y2 = x3 + x
2 + 5

3 . We may
change variables by x = X

62 and y = Y
63 to obtain a new equation

Y 2 = X3 + 648X + 77760 with integral coefficients.

In 1929, Siegel proved the following result about integral points,
E(Z), i.e. about those points on E with integer coordinates:

Theorem 2.3.2 (Siegel’s theorem; [Sil86], Ch. IX, Thm. 3.1). Let
E/Q be an elliptic curve given by y2 = x3 +Ax+B, with A,B ∈ Z.
Then E has only a finite number of integral points.

Siegel’s theorem is a consequence of a well-known theorem of
Roth on diophantine approximation. Unfortunately, Siegel’s theorem
is not effective and does not provide neither a method to find the
integral points on E, nor a bound on the number of integral points.
However, in [Bak90], Alan Baker found an alternative proof that
provides an explicit upper bound on the size of the coefficients of an
integral solution. More concretely, if x, y ∈ Z satisfy y2 = x3+Ax+B
then

max(|x|, |y|) < exp((106 ·max(|A|, |B|))106
).

Obviously, Baker’s bound is not a very sharp bound, but it is theo-
retically interesting nonetheless. From now on, we will concentrate
on trying to find all rational points on a curve E : y2 = x3 +Ax+B.
We will use the following notation for the rational points on E:

E(Q) = {(x, y) ∈ E | x, y ∈ Q} ∪ {O}

where O = [0, 1, 0] is the point at infinity.
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Figure 1. Addition of points on an elliptic curve

One of the aspects that makes the theory of elliptic curves so
rich is that the set E(Q) can be equipped with a group structure,
geometric in nature. The (addition) operation on E(Q) can be defined
as follows (see Figure 1). Let E be given by a Weierstrass equation
y2 = x3 +Ax+B with A,B ∈ Q. Let P and Q be two rational points
in E(Q) and let L = PQ be the line that goes through P and Q (if
P = Q then we define L to be the tangent line to E at P ). Since
the curve E is defined by a cubic equation, and since we have defined
L so it already intersects E at two rational points, there must be a
third point of intersection R in L ∩ E, which is also defined over Q,
and

L ∩ E(Q) = {P,Q,R}.

The sum of P and Q, denoted by P +Q, is by definition the second
point of intersection with E of the vertical line that goes through R,
or in other words, the reflection of R across the x-axis.
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Example 2.3.3. Let E be the elliptic curve y2 = x3 − 25x, as in
Example 1.1.2. The points P = (5, 0) and Q = (−4, 6) belong to
E(Q). Let us find P + Q. First, we find the equation of the line
L = PQ. The slope must be

m =
0− 6

5− (−4)
= −6

9
= −2

3

and the line is L : y = − 2
3 (x − 5). Now we find the third point of

intersection of L and E by solving:{
y = − 2

3 (x− 5)

y2 = x3 − 25x.

Plugging the first equation in the second one, we obtain an equation

x3 − 4
9
x2 − 185

9
x− 100

9
= 0

which factors as (x − 5)(x + 4)(9x + 5) = 0. The first two factors
are expected, since we already knew that P = (5, 0) and Q = (−4, 6)
are in L ∩ E. The third point of intersection must have x = − 5

9 ,
y = − 2

3 (x − 5) = 100
27 and, indeed, R = (− 5

9 ,
100
27 ) is a point in

L ∩ E(Q). Thus, P + Q is the reflection of R accross the x-axis, i.e.
P +Q = (− 5

9 ,−
100
27 ).

Using Proposition 1.1.3, we may try to use the point P + Q =
(− 5

9 ,−
100
27 ) to find a (new) right triangle with rational sides and area

equal to 5, but this point corresponds to the triangle ( 20
3 ,

3
2 ,

41
6 ), the

same triangle that corresponds to Q = (−4, 6). In order to find a new
triangle, let us find Q+Q = 2Q.

The line L in this case is the tangent line to E at Q. The slope
of L can be found using implicit differentiation on y2 = x3 − 25x:

2y
dy

dx
= 3x2 − 25, so

dy

dx
=

3x2 − 25
2y

.

Hence, the slope of L is m = 23
12 and L : y = 23

12 (x + 4) + 6. In order
to find R we need to solve:{

y = 23
12 (x+ 4) + 6

y2 = x3 − 25x.
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Simplifying yields x3 − 529
144x

2 − 1393
18 x− 1681

9 = 0, which factors as

(x+ 4)2(144x− 1681) = 0.

Once again, two factors were expected: x = −4 needs to be a double
root because L is tangent to E at Q = (−4, 6). The third factors tells
us that the x coordinate of R is x = 1681

144 , and y = 23
12 (x + 4) + 6 =

62279
1728 . Thus, Q + Q = 2Q = ( 1681

144 ,−
62279
1728 ). This point corresponds

to the right triangle:

(a, b, c) =
(

1519
492

,
4920
1519

,
3344161
747348

)
.

Example 2.3.4. Let E : y2 = x3 + 1 and put P = (2, 3). Let us find
P , 2P , 3P , etc:

Figure 2. The rational points on y2 = x3 + 1, except the
point at ∞.

• In order to find 2P , first we need to find the tangent line to
E at P , which is y − 3 = 2(x− 2) or y = 2x− 1. The third
point of intersection is R = (0,−1) so 2P = (0, 1).
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• To find 3P , we add P and 2P . The third point of inter-
section of E with the line that goes through P and 2P is
R′ = (−1, 0), hence 3P = (−1, 0).

• The point 4P can be found by adding 3P and P . The third
point of intersection of E and the line through P and 3P is
R′′ = 2P = (0, 1), and so 4P = P + 3P = (0,−1).

• We find 5P by adding 4P and P . Notice that the line that
goes through 4P = (0,−1) and P = (2, 3) is tangent at
(2, 3), so the third point of intersection is P . Thus, 5P =
4P + P = (2,−3).

• Finally, 6P = P + 5P but 5P = (2,−3) = −P . Hence,
6P = P + (−P ) = O, the point at infinity.

This means that P is a point of finite order, and its order equals
6. See Figure 2 (the SAGE code for this graph can be found in the
Appendix A.1.3).

The addition law can be defined more generally on any smooth
projective cubic curve E : f(X,Y, Z) = 0, with a given rational point
O. Let P,Q ∈ E(Q) and let L be the line that goes through P and
Q. Let R be the third point of intersection of L and E. Then R is
also a rational point in E(Q). Let L′ be the line through R and O.
We define P + Q to be the third point of intersection of L′ and E.
Notice that any vertical line x = a in the affine plane passes through
[0, 1, 0], because the same line in projective coordinates is given by
x = az and [0, 1, 0] belongs to such line. Thus, if E is given by a
model y2 = x3 + Ax + B then L′ is always a vertical line, so P + Q

is always the reflection of R with respect to the x axis.

It is easy to verify that the addition operation that we have de-
fined on points of E(Q) is commutative. The origin O is the zero
element, and for every P ∈ E(Q) there exists a point −P such that
P + (−P ) = O. If E is given by y2 = x3 + Ax+B and P = (x0, y0)
then −P = (x0,−y0). The addition is also associative (but this is not
obvious, and tedious to prove) and, therefore, (E,+) is an abelian
group.
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The next step in the study of the structure of E(Q) was proved
by Mordell in 1922, and generalized by André Weil in his thesis, in
1928:

Theorem 2.3.5 (Mordell-Weil). E(Q) is a finitely generated abelian
group. In other words, there are points P1, . . . , Pn such that any other
point Q in E(Q) can be expressed as a linear combination

Q = a1P1 + a2P2 + · · ·+ anPn

for some ai ∈ Z.

Figure 3. Louis Mordell (1888-1972) and André Weil (1906-1998).

The group E(Q) is usually called the Mordell-Weil group of E,
in honor of the two mathematicians that proved the theorem. The
proof of the theorem has three fundamental ingredients: the so-called
weak Mordell-Weil theorem (E(Q)/mE(Q) is finite, for any m ≥ 2;
see below); the concept of height functions on abelian groups and
the descent theorem, which establishes that an abelian group A with
a height function h, such that A/mA is finite (for some m ≥ 2), is
finitely generated.

Theorem 2.3.6 (weak Mordell-Weil). E(Q)/mE(Q) is a finite group
for all m ≥ 2.

http://www.gap-system.org/~history/Biographies/Mordell.html
http://www.gap-system.org/~history/Biographies/Weil.html
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We will discuss the proof of a special case of the weak Mordell-
Weil theorem in Section 2.8 (see Corollary 2.8.7).

It follows from the Mordell-Weil theorem and the general struc-
ture theory of finitely generated abelian groups that

E(Q) ∼= E(Q)torsion ⊕ ZRE .(2.4)

In other words, E(Q) is isomorphic to the direct sum of two abelian
groups (notice however that this decomposition is not canonical!).
The first summand is a finite group formed by all torsion elements,
i.e. those points on E of finite order:

E(Q)torsion = {P ∈ E(Q) : there is n ∈ N such that nP = O}.

The second summand of Eq. (2.4), sometimes called the free part, is
ZRE , i.e. RE copies of Z, for some integer RE ≥ 0. It is generated by
RE points of E(Q) of infinite order (i.e. P ∈ E(Q) such that nP 6= O
for all non-zero n ∈ Z). The number RE is called the rank of the
elliptic curve E/Q. Notice, however, that the set

F = {P ∈ E(Q) : P is of infinite order} ∪ {O}

is not a subgroup of E(Q) if the torsion subgroup is non-trivial. For
instance, if T is a torsion point and P is of infinite order, then P and
P + T belong to F but T = (P + T )− P does not belong to F . This
fact makes the isomorphism of Eq. (2.4) not canonical because the
subgroup of E(Q) isomorphic to ZRE cannot be chosen, in general,
in a unique way.

Example 2.3.7. The following are some examples of elliptic curves
and their Mordell-Weil groups:

(1) The curve E1/Q : y2 = x3 + 6 has no rational points, other
than the point at infinity O. Therefore, there are no torsion
points (other than O) and no points of infinite order. In
particular, the rank is 0, and E1(Q) = {O}.

(2) The curve E2/Q : y2 = x3 + 1 has only 6 rational points.
As we saw in Example 2.3.4, the point P = (2, 3) has exact
order 6. Therefore E2(Q) ∼= Z/6Z is an isomorphism of
groups. Since there are no points of infinite order, the rank
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of E2/Q is 0, and

E2(Q) = {O, P, 2P, 3P, 4P, 5P} = {O, (2,±3), (0,±1), (−1, 0)}.

(3) The curve E3/Q : y2 = x3 − 2 does not have any rational
torsion points other than O (as we shall see in the next
section). However, the point P = (3, 5) is a rational point.
Thus, P must be a point of infinite order and E3(Q) contains
infinitely many distinct rational points. In fact, the rank of
E3 is equal to 1 and P is a generator of all of E3(Q), i.e.

E3(Q) = {nP : n ∈ Z} and E3(Q) ∼= Z.

(4) The elliptic curve E4/Q : y2 = x3 + 7105x2 + 1327104x
features both torsion and infinite order points. In fact,
E4(Q) ∼= Z/4Z ⊕ Z3. The torsion subgroup is generated
by the point T = (1152, 111744) of order 4. The free part is
generated by three points of infinite order:

P1 = (−6912, 6912), P2 = (−5832, 188568), P3 = (−5400, 206280).

Hence

E4(Q) = {aT + bP1 + cP2 + dP3 : a = 0, 1, 2 or 3 and b, c, d ∈ Z}.

As we mentioned above, the isomorphism E4(Q) ∼= Z/4Z⊕
Z3 is not canonical. For instance, E4(Q) ∼= 〈T 〉⊕〈P1, P2, P3〉
but also E4(Q) ∼= 〈T 〉 ⊕ 〈P ′1, P2, P3〉 with P ′1 = P1 + T .

The rank of E/Q is, in a sense, a measurement of the arithmetic
complexity of the elliptic curve. It is not known if there is an upper
bound for the possible values of RE (the largest rank known is 28,
discovered by Noam Elkies; see Andrej Dujella’s website [Duj09] for
up to date records and examples of curves with “high” ranks). It has
been conjectured (with some controversy) that ranks can be arbitrar-
ily large, i.e. for all n ∈ N there exists an elliptic curve E over Q with
RE ≥ n. One of the key pieces of evidence in favor of such a conjec-
ture was offered by Shafarevich and Tate, who proved that there exist
elliptic curves defined over function fields Fp(T ) and with arbitrarily
large ranks (Fp(T ) is a field that shares many similar properties with
Q; see [ShT67]). In any case, the problem of finding elliptic curves

http://web.math.hr/~duje/tors/tors.html
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of high rank is particularly interesting because of its arithmetic and
computational complexity.

2.4. The torsion subgroup

In this section we concentrate on the torsion points of an elliptic
curve:

E(Q)torsion = {P ∈ E(Q) : there is n ∈ N such that nP = O}.

Example 2.4.1. The curve En : y2 = x3−n2x = x(x−n)(x+n) has
three obvious rational points, namely P = (0, 0), Q = (−n, 0), T =
(n, 0), and it is easy to check (see Exercise 2.11.6) that each one of
these points is torsion of order 2, i.e. 2P = 2Q = 2T = O, and
P +Q = T . In fact:

En(Q)torsion = {O, P,Q, T} ∼= Z/2Z⊕ Z/2Z.

Note that the Mordell-Weil theorem implies that E(Q)torsion is
always finite. This fact prompts a natural question: what abelian
groups can appear in this context? The answer was conjectured by
Ogg and proven by Mazur:

Theorem 2.4.2 (Ogg’s conjecture; Mazur, [Maz77], [Maz78]). Let
E/Q be an elliptic curve. Then, E(Q)torsion is isomorphic to exactly
one of the following groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12, or(2.5)

Z/2Z⊕ Z/2MZ with 1 ≤M ≤ 4.

Example 2.4.3. For instance, the torsion subgroup of the elliptic
curve with Weierstrass equation y2 + 43xy − 210y = x3 − 210x2 is
isomorphic to Z/12Z and it is generated by the point (0, 210). The
elliptic curve y2 + 17xy − 120y = x3 − 60x2 has a torsion subgroup
isomorphic to Z/2Z⊕Z/8Z, generated by the rational points (30,−90)
and (−40, 400). See Figure 4 for a complete list of examples with each
possible torsion subgroup.

Furthermore, it is known that, if G is any of the groups in Eq.
2.5, there are infinitely many elliptic curves whose torsion subgroup is
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Curve Torsion Generators
y2 = x3 − 2 trivial O
y2 = x3 + 8 Z/2Z (−2, 0)
y2 = x3 + 4 Z/3Z (0, 2)
y2 = x3 + 4x Z/4Z (2, 4)

y2 − y = x3 − x2 Z/5Z (0, 1)
y2 = x3 + 1 Z/6Z (2, 3)

y2 = x3 − 43x+ 166 Z/7Z (3, 8)
y2 + 7xy = x3 + 16x Z/8Z (−2, 10)

y2 + xy + y = x3 − x2 − 14x+ 29 Z/9Z (3, 1)
y2 + xy = x3 − 45x+ 81 Z/10Z (0, 9)

y2 + 43xy − 210y = x3 − 210x2 Z/12Z (0, 210)
y2 = x3 − 4x Z/2Z⊕ Z/2Z

(
(2,0)
(0,0)

)
y2 = x3 + 2x2 − 3x Z/4Z⊕ Z/2Z

(
(3,6)
(0,0)

)
y2 + 5xy − 6y = x3 − 3x2 Z/6Z⊕ Z/2Z

(
(−3,18)
(2,−2)

)
y2 + 17xy − 120y = x3 − 60x2 Z/8Z⊕ Z/2Z

(
(30,−90)
(−40,400)

)
Figure 4. Examples of each of the possible torsion subgroups
over Q.

isomorphic to G. See, for example, [Kub76], Table 3, p. 217. For the
convenience of the reader, the table in Kubert’s article is reproduced
in Appendix E.

Example 2.4.4. Let Eb : y2 + (1− b)xy − by = x3 − bx2 with b ∈ Q
and ∆(b, c) = b5(b2 − 11b − 1) 6= 0. Then, the torsion subgroup of
Eb(Q) contains a subgroup isomorphic to Z/5Z, and (0, 0) is a point
of exact order 5. Conversely, if E : y2 = x3 + Ax + B is an elliptic
curve with torsion subgroup equal to Z/5Z then there is an invertible
change of variables that takes E to an equation of the form Eb, for
some b ∈ Q.

A useful and simple consequence of Mazur’s theorem is that if
the order of a rational point P ∈ E(Q) is larger than 12, then P must
be a point of infinite order and, therefore, E(Q) contains an infinite
number of distinct rational points. Except for this criterion, Mazur’s
theorem is not very helpful in effectively computing the torsion sub-
group of a given elliptic curve. However, the following result, proven
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independently by E. Lutz and T. Nagell, provides a simple algorithm
to determine E(Q)torsion:

Theorem 2.4.5 (Nagell-Lutz, [Nag35], [Lut37]). Let E/Q be an
elliptic curve with Weierstrass equation

y2 = x3 +Ax+B, A,B ∈ Z.

Then, every torsion point P 6= O of E satisfies:

(1) The coordinates of P are integers, i.e. x(P ), y(P ) ∈ Z.

(2) If P is a point of order n ≥ 3 then 4A3 + 27B2 is divisible
by y(P )2.

(3) If P is of order 2 then y(P ) = 0 and x(P )3+Ax(P )+B = 0.

For a proof, see [Sil86], Ch. VIII, Corollary 7.2, or [Mil06], Ch.
II, Theorem 5.1.

Example 2.4.6. Let E/Q : y2 = x3− 2, so that A = 0 and B = −2.
The polynomial x3−2 does not have any rational roots, so E(Q) does
not contain any points of order 2. Also, 4A3 + 27B2 = 27 · 4. Thus, if
(x(P ), y(P )) are the coordinates of a torsion point in E(Q) then y(P )
is an integer and y(P )2 divides 27 · 4. This implies that y(P ) = ±1,
±2, ±3, or ±6. In turn, this implies that x(P )3 = 3, 6, 11 or 38,
respectively. However, x(P ) is an integer, and none of 3, 6, 11 or 38
is a perfect cube. Thus, E(Q)torsion is trivial (i.e. the only torsion
point is O).

Example 2.4.7. Let p ≥ 2 be a prime number and let us define a
curve Ep : y2 = x3 + p2. Since x3 + p2 = 0 does not have any rational
roots, Ep(Q) does not contain points of order 2. Let P be a torsion
point on Ep(Q). The list of all squares dividing 4A3 + 27B2 = 27p4

is short, and by the Nagell-Lutz theorem the possible values for y(P )
are:

y = ±1, ±p, ±p2, ±3p, ±3p2, and ± 3.

Clearly, (0,±p) ∈ Ep(Q) and one can show that those two points and
O are the only torsion points - see Exercise 2.11.8. Thus, the torsion
subgroup of Ep(Q) is isomorphic to Z/3Z, for any prime p ≥ 2.
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2.5. Elliptic curves over finite fields

Let p ≥ 2 be a prime and let Fp be the finite field with p elements,
i.e.

Fp = Z/pZ = {a mod p : a = 0, 1, 2, . . . , p− 1}.
Fp is a field and we may consider elliptic curves defined over Fp. As
for elliptic curves over Q, there are two conditions that need to be
satisfied: the curve needs to be given by a cubic equation, and the
curve needs to be smooth.

Example 2.5.1. For instance, E : y2 ≡ x3 + 1 mod 5 is an ellip-
tic curve defined over F5. It is clearly given by a cubic equation
(zy2 ≡ x3+z3 mod 5 in the projective plane P2(F5)) and it is smooth,
because for F ≡ zy2 − x3 − z3 mod 5 the partial derivatives are:

∂F

∂x
≡ −3x2,

∂F

∂y
≡ 2yz,

∂F

∂z
≡ y2 − 3z2 mod 5.

Thus, if the partial derivatives are congruent to 0 modulo 5, then
x ≡ 0 mod 5 and yz ≡ 0 mod 5. The latter congruence implies that
y or z ≡ 0 mod 5, and ∂F/∂z ≡ 0 implies that y ≡ z ≡ 0 mod 5.
Since [0, 0, 0] is not a point in the projective plane, we conclude that
there are no singular points on E/F5.

However, C/F3 : y2 ≡ x3 + 1 mod 3 is not an elliptic curve be-
cause it is not smooth. Indeed, the point P = (2 mod 3, 0 mod 3) ∈
C(F3) is a singular point:

∂F

∂x
(P ) ≡ −3 · 22 ≡ 0,

∂F

∂y
(P ) ≡ 2 · 0 · 1 ≡ 0, and

∂F

∂z
(P ) ≡ 02 − 3 · 12 ≡ 0 mod 3.

Let E/Q be an elliptic curve given by a Weierstrass equation
y2 = x3 + Ax + B with integer coefficients A,B ∈ Z, and let p ≥ 2
be a prime number. If we reduce A and B modulo p then we obtain
the equation of a curve Ẽ given by a cubic curve and defined over
the field Fp. Even though E is smooth as a curve over Q, the curve
Ẽ may be singular over Fp. In the previous example, we saw that
E/Q : y2 = x3 + 1 is smooth over Q and F5 but it has a singularity
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over F3. If the reduction curve Ẽ is smooth, then it is an elliptic
curve over Fp.

Example 2.5.2. Sometimes the reduction of a model for an elliptic
curve E modulo a prime p is not smooth, but it is smooth for some
other models of E. For instance, consider the curve E : y2 = x3 +
15625. Then Ẽ ≡ E mod 5 is not smooth over F5 because the point
(0, 0) mod 5 is a singular point. However, using the invertible change
of variables (x, y) 7→ (52X, 53Y ) we obtain a new model over Q for
E given by E′ : Y 2 = X3 + 1, which is smooth when we reduce it
modulo 5. The problem here is that the model we chose for E is not
minimal. We describe what we mean by minimal next.

Definition 2.5.3. Let E be an elliptic curve given by y2 = x3 +Ax+
B, with A,B ∈ Q.

(1) We define ∆E , the discriminant of E, by

∆E = −16(4A3 + 27B2).

For a definition of the discriminant for more general Weier-
strass equations, see for example [Sil86], p. 46.

(2) Let S be the set of all elliptic curves E′ that are isomorphic
to E over Q (see Definition 2.2.4), and such that the dis-
criminant of E′ is an integer. The minimal discriminant of
E is the integer ∆E′ that attains the minimum of the set
{|∆E′ | : E′ ∈ S}. In other words, the minimal discriminant
is the smallest integral discriminant (in absolute value) of
an elliptic curve that is isomorphic to E over Q. If E′ is the
model for E with minimal discriminant, we say that E′ is a
minimal model for E.

Example 2.5.4. The curve E : y2 = x3 + 56 has discriminant
∆E = −2433512 and the curve E′ : y2 = x3 + 1 has discriminant
∆E′ = −2433. Since E and E′ are isomorphic (see Definition 2.2.4
and Example 2.5.2), then ∆E cannot be the minimal discriminant for
E and y2 = x3 + 56 is not a minimal model. In fact, the minimal
discriminant is ∆E′ = −432 and E′ is a minimal model.

Before we go on to describe the types of reduction one can en-
counter, we need a little bit of background on types of singularities.
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Let Ẽ be a cubic curve over a field K with Weierstrass equation
f(x, y) = 0, where:

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6

and suppose that Ẽ has a singular point P = (x0, y0), i.e. ∂f/∂x(P ) =
∂f/∂y(P ) = 0. Thus, we can write the Taylor expansion of f(x, y)
around (x0, y0) as follows:

f(x, y)− f(x0, y0)

= λ1(x− x0)2 + λ2(x− x0)(y − y0) + λ3(y − y0)2 − (x− x0)3

= ((y − y0)− α(x− x0)) · ((y − y0)− β(x− x0))− (x− x0)3

for some λi ∈ K and α, β ∈ K̄ (an algebraic closure of K).

Definition 2.5.5. The singular point P ∈ Ẽ is a node if α 6= β. In
this case there are two different tangent lines to Ẽ at P , namely:

y − y0 = α(x− x0), y − y0 = β(x− x0)

If α = β then we say that P is a cusp, and there is a unique tangent
line at P .

Definition 2.5.6. Let E/Q be an elliptic curve given by a minimal
model, let p ≥ 2 be a prime and let Ẽ be the reduction curve of E
modulo p. We say that E/Q has good reduction modulo p if Ẽ is a
smooth elliptic curve over Fp. If Ẽ is singular at a point P ∈ E(Fp)
then we say that E/Q has bad reduction at p and we distinguish two
cases:

(1) If Ẽ has a cusp at P , then we say that E has additive (or
unstable) reduction.

(2) If Ẽ has a node at P then we say that E has multiplicative
(or semistable) reduction. If the slopes of the tangent lines
(α and β as above) are in Fp then the reduction is said to
be split multiplicative (and non-split otherwise).

Example 2.5.7. (1) E1 : y2 = x3 + 35x+ 5 has good reduction
at p = 7, because y2 ≡ x3 + 5 mod 7 is a non-singular curve
over F7.
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(2) However E1 has bad reduction at p = 5, and the reduction
is additive, since modulo 5 we can write the equation as
((y − 0)− 0 · (x− 0))2 − x3 and the unique slope is 0.

(3) The elliptic curve E2 : y2 = x3−x2 + 35 has bad multiplica-
tive reduction at 5 and 7. The reduction at 5 is split, while
the reduction at 7 is non-split. Indeed, modulo 5 we can
write the equation as

((y − 0)− 2(x− 0)) · ((y − 0) + 2(x− 0))− x3,

the slopes being 2 and −2. However, for p = 7 the slopes
are not in F7 (because −1 is not a quadratic residue in F7).
Indeed, when we reduce the equation modulo 7 we obtain

y2 + x2 − x3 mod 7

and y2 + x2 can only be factored in F7[i] but not in F7.

(4) Let E3 be an elliptic curve given by the model y2 + y =
x3 − x2 − 10x − 20. This is a miminal model for E3 and
its (minimal) discriminant is ∆E3 = −115. The prime 11 is
the unique prime of bad reduction and the reduction is split
multiplicative. Indeed, the point (5, 5) mod 11 is a singular
point on E3(F11) and

f(x, y) = y2 + y + x2 + 10x+ 20− x3

= (y − 5− 5(x− 5)) · (y − 5 + 5(x− 5))− (x− 5)3.

Hence, the slopes at (5, 5) are 5 and −5, which are obviously
in F11 and distinct.

Proposition 2.5.8. Let K be a field and let E/K be a cubic curve
given by y2 = f(x), where f(x) is a monic cubic polynomial in K[x].
Suppose that f(x) = (x − α)(x − β)(x − γ) with α, β, γ ∈ K (an
algebraic closure of K) and put

D = (α− β)2(α− γ)2(β − γ)2.

Then E is non-singular if and only if D 6= 0.

The proof of the proposition is left as an exercise (see Exercise
2.11.9). Notice that the quantity D that appears in the previous
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proposition is the discriminant of the polynomial f(x). The discrim-
inant of E/Q, ∆E as in Definition 2.5.3, is a multiple of D, in fact
∆E = 16D. This fact together with Proposition 2.5.8 yield the fol-
lowing corollary:

Corollary 2.5.9. Let E/Q be an elliptic curve with coefficients in
Z. Let p ≥ 2 be a prime. If E has bad reduction at p then p | ∆E. In
fact, if E is given by a minimal model, then p | ∆E if and only if E
has bad reduction at p.

Example 2.5.10. The discriminant of the elliptic curve E1 : y2 =
x3 + 35x+ 5 of Example 2.5.7 is ∆E1 = −2754800 = −24 · 52 · 71 · 97
(and, in fact, this is the minimal discriminant of E1). Thus, E1 has
good reduction at 7 but it has bad reduction at 2, 5, 71 and 97. The
reduction at 71 and 97 is multiplicative.

Let Ẽ be an elliptic curve defined over a finite field Fq with q

elements, where q = pr and p ≥ 2 is prime. Notice that Ẽ(Fq) ⊆
P2(Fq), and the projective plane over Fq only has a finite number
of points (how many?). Thus, the number Nq := |Ẽ(Fq)|, i.e. the
number of points on Ẽ over Fq, is finite. The following theorem
provides a bound for Nq. This result was conjectured by Emil Artin
(in his thesis) and was proved by Helmut Hasse in the 1930’s:

Theorem 2.5.11 (Hasse; [Sil86], Ch. V, Theorem 1.1). Let Ẽ be
an elliptic curve defined over Fq. Then:

q + 1− 2
√
q < Nq < q + 1 + 2

√
q

where Nq = |Ẽ(Fq)|.

Example 2.5.12. Let E/Q be the elliptic curve y2 = x3 + 3. Its
minimal discriminant is ∆E = −3888 = −24 · 35. Thus, the only
primes of bad reduction are 2 and 3 and Ẽ/Fp is smooth for all p ≥ 5.
For p = 5, there are precisely 6 points on Ẽ(F5) namely:

Ẽ(F5) = {Õ, (1, 2), (1, 3), (2, 1), (2, 4), (3, 0)}

where all the coordinates should be regarded as congruences modulo
5. Thus, N5 = 6 which is in the range given by Hasse’s bound:

1.5278 . . . = 5 + 1− 2
√

5 < N5 < 5 + 1 + 2
√

5 = 10.4721 . . .

http://www.gap-system.org/~history/Biographies/Artin.html
http://www.gap-system.org/~history/Biographies/Hasse.html
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Figure 5. Helmut Hasse (1898-1979).

Similarly, one can verify that N7 = 13.

The connections between the numbers Np and the group E(Q)
are numerous and of great interest. The most surprising relationship
is captured by the Birch and Swinnerton-Dyer conjecture (Conjecture
5.2.1), that relates the growth of Np (as p varies) with the rank of the
elliptic curve E/Q. We shall discuss this conjecture in Section 5.2 in
more detail. In the next proposition we describe a different connection
between Np and E(Q). We shall use the following notation: if G is
an abelian group and m ≥ 2, then the points of G of order dividing
m will be denoted by G[m].

Proposition 2.5.13 ([Sil86], Ch. VII, Prop. 3.1). Let E/Q be an
elliptic curve, p a prime number and m a natural number, not divisible
by p. Suppose that E/Q has good reduction at p. Then the reduction
map modulo p:

E(Q)[m] −→ Ẽ(Fp)

is an injective homomorphism of abelian groups. In particular, the
number of elements of E(Q)[m] divides the number of elements of
Ẽ(Fp).
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The previous proposition can be very useful when calculating the
torsion subgroup of an elliptic curve. Let’s see an application:

Example 2.5.14. Let E/Q : y2 = x3 +3. In Example 2.5.12 we have
seen that N5 = 6 and N7 = 13, and E/Q has bad reduction only at
2 and 3.

If q 6= 5, 7 is a prime number, then E(Q)[q] is trivial. Indeed,
Proposition 2.5.13 implies that |E(Q)[q]| divides N5 = 6 and also
N7 = 13. Thus, |E(Q)[q]| must divide gcd(6, 13) = 1.

In the case of q = 5, we know that |E(Q)[5]| divides N7 = 13.
Moreover, it is easy to show that, if E(Q)[p] is non-trivial, then p

divides |E(Q)[p]| (later on we will see that E(Q)[p] is always a sub-
group of Z/pZ × Z/pZ; see Exercise 3.7.5). Since 5 does not divide
13, it follows that E(Q)[5] must be trivial. Similarly, one can show
that E(Q)[7] is trivial, and we conclude that E(Q)torsion is trivial.

However, notice that P = (1, 2) ∈ E(Q) is a point on the curve.
Since we just proved that E does not have any points of finite order,
it follows that P must be a point of infinite order, and, hence, we have
shown that E has infinitely many rational points: ±P,±2P,±3P, . . ..
In fact, E(Q) ∼= Z and (1, 2) is a generator of its Mordell-Weil group.

In the previous example, the Nagell-Lutz theorem (Theorem 2.4.5)
would have yielded the same result, i.e. the torsion is trivial, in an eas-
ier way. Indeed, for the curve E : y2 = x3 +3 the quantity 4A3 +27B2

equals 35, so the possibilities for y(P )2, where P is a torsion point of
order ≥ 3, are 1, 9 or 81 (it is easy to see that there are no 2-torsion
points). Therefore, the possibilities for x(P )3 = y(P )2 − 3 are −2,
6 or 78, respectively. Since x(P ) is an integer, we reach a contradic-
tion. In the following example, the Nagell-Lutz theorem would be a
lengthier and much more tedious alternative and Proposition 2.5.13
is much more effective.

Example 2.5.15. Let E/Q : y2 = x3 + 4249388. In this case

4A3 + 27B2 = 24 · 33 · 112 · 132 · 172 · 192 · 232.

Therefore, 4A3 + 27B2 is divisible by 192 distinct positive squares,
which makes it very tedious to use the Nagell-Lutz theorem. The
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(minimal) discriminant of E/Q is ∆E = −16(4A3 + 27B2) and there-
fore E has good reduction at 5 and 7. Moreover, B = 4249388 ≡
3 mod 35 and therefore, by our calculations in Example 2.5.14, N5 = 6
and N7 = 13. Thus, Proposition 2.5.13, and the same argument we
used in Ex. 2.5.14, shows that the torsion of E(Q) is trivial.

Incidentally, the curve E/Q : y2 = x3 + 4249388 has a rational
point P =

(
25502
169 , 6090670

2197

)
. Since the torsion of E(Q) is trivial, P

must be of infinite order. Another way to see this: since P has
rational coordinates, which are not integral, the Nagell-Lutz theorem
implies that the order of P is infinite. In fact, E(Q) is isomorphic to
Z and it is generated by P .

2.6. The rank and the free part of E(Q)

In the previous sections we have been able to describe efficient al-
gorithms that determine the torsion subgroup of E(Q). Recall that
the Mordell-Weil theorem (Thm. 2.3.5) says that there is a (non-
canonical) isomorphism

E(Q) ∼= E(Q)torsion ⊕ ZRE .

Our next goal is to try to find RE generators of the free part of the
Mordell-Weil group. Unfortunately, no algorithm is known that will
always yield such free points. We don’t even have a way to determine
RE , the rank of the curve, although sometimes we can obtain upper
bounds for the rank of a given curve E/Q (see, for instance, Theorem
2.6.4 below).

Naively, one could hope that if the coefficients of the (minimal)
Weierstrass equation for E/Q are small, then the coordinates of the
generators of E(Q) should also be small, and perhaps a brute force
computer search would yield these points. However, Bremner and
Cassels found the following surprising example: the curve y2 = x3 +
877x has rank equal to 1 and the x-coordinate of a generator P is

x(P ) = (612776083187947368101/78841535860683900210)2.

However, Serge Lang salvaged this idea and conjectured that for all
ε > 0 there is a constant Cε such that there is a system of generators
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{Pi : i = 1, . . . , RE} of E(Q) with

ĥ(Pi) ≤ Cε · |∆E |1/2+ε

where ĥ is the canonical height function of E/Q, which we define next.
Lang’s conjecture says that the size of the coordinates of a generator
may grow exponentially with the (minimal) discriminant of a curve
E/Q.

Definition 2.6.1. We define the height of mn ∈ Q, with gcd(m,n) =
1, by:

h
(m
n

)
= log(max{|m|, |n|}).

This can be used to define a height on a point P = (x, y) on elliptic
curve E/Q, with x, y ∈ Q by:

H(P ) = h(x).

Finally, we define the canonical height of P ∈ E(Q) by

ĥ(P ) =
1
2

lim
N→∞

H(2N · P )
4N

.

Note: here 2N ·P means multiplication in the curve, using the addition
law defined in Section 2.3, i.e. 2 · P = P + P , 22 · P = 2P + 2P , etc.
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Example 2.6.2. Let E : y2 = x3 + 877x and let P be a generator of
E(Q). Here are some values of 1

2 ·
H(2N ·P )

4N
:

1
2
·H(P ) = 47.8645312628 . . .

1
2
· H(2 · P )

4
= 47.7958126219 . . .

1
2
· H(22 · P )

42
= 47.9720107996 . . .

1
2
· H(23 · P )

43
= 47.9636902383 . . .

1
2
· H(24 · P )

44
= 47.9901607777 . . .

1
2
· H(25 · P )

45
= 47.9901600133 . . .

1
2
· H(26 · P )

46
= 47.9901569227 . . .

1
2
· H(27 · P )

47
= 47.9901419861 . . .

1
2
· H(28 · P )

48
= 47.9901807594 . . .

The limit is in fact equal to ĥ(P ) = 47.9901859939..., well below the
value |∆E |1/2 = 207, 773.12....

The canonical height enjoys the following properties and, in fact,
the canonical height is defined so that it is (essentially) the only height
that satisfies these properties:

Proposition 2.6.3 (Néron-Tate). Let E/Q be an elliptic curve and
let ĥ be the canonical height on E.

(1) For all P,Q ∈ E(Q), ĥ(P +Q)+ ĥ(P −Q) = 2ĥ(P )+2ĥ(Q).
(Note: this is called the parallelogram law.)

(2) For all P ∈ E(Q) and m ∈ Z, ĥ(mP ) = m2 · ĥ(P ). (Note:
in particular, the height of mP is much larger height than
the height of P , for any m 6= 0, 1.)

(3) Let P ∈ E(Q). Then ĥ(P ) ≥ 0, and ĥ(P ) = 0 if and only if
P is a torsion point.
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For the proofs of these properties, see [Sil86], Ch. VIII, Thm.
9.3, or [Mil06], Ch. IV, Prop. 4.5 and Thm. 4.7.

As we mentioned at the beginning of this section, we can calculate
upper bounds on the rank of a given elliptic curve (see [Sil86], p. 235,
exercises 8.1, 8.2). Here is an example:

Theorem 2.6.4 ([Loz08], Prop. 1.1). Let E/Q be an elliptic curve
given by a Weierstrass equation of the form

E : y2 = x3 +Ax2 +Bx, with A,B ∈ Z.

Let RE be the rank of E(Q). For an integer N ≥ 1, let ν(N) be the
number of distinct positive prime divisors of N . Then:

RE ≤ ν(A2 − 4B) + ν(B)− 1.

More generally, let E/Q be any elliptic curve with a non-trivial point
of 2-torsion and let a (resp. m) be the number of primes of additive
(resp. multiplicative) bad reduction of E/Q. Then:

RE ≤ m+ 2a− 1.

Example 2.6.5. Pierre de Fermat proved that n = 1 is not a con-
gruent number (see Example 1.1.2) by showing that x4 + y4 = z2 has
no rational solutions. As an application of the previous theorem, let
us show that the curve

E1 : y2 = x3 − x = x(x− 1)(x+ 1)

only has the trivial solutions (0, 0), (±1, 0) which are torsion points
of order 2. Indeed, the minimal discriminant of E1 is ∆E1 = 64.
Therefore p = 2 is the unique prime of bad reduction. Moreover, the
reader can check that the reduction at p = 2 is multiplicative. Now
thanks to Theorem 2.6.4 we conclude that RE1 = 0 and E1 only has
torsion points. Finally, using Proposition 2.5.13 or Theorem 2.4.5,
we can show that the only torsion points are the three trivial points
named above.

Example 2.6.6. Let E/Q be the elliptic curve y2 = x(x+ 1)(x+ 2),
which already appeared in Example 1.1.1. Since the equation of the
Weierstrass equation is

y2 = x(x+ 1)(x+ 2) = x3 + 3x2 + 2x
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it follows from Theorem 2.6.4 that the rank RE satisfies:

RE ≤ ν(A2 − 4B) + ν(B)− 1 = ν(1) + ν(2)− 1 = 0 + 1− 1 = 0

and therefore the rank is 0. The reader can check that

E(Q)torsion = {O, (0, 0), (−1, 0), (−2, 0)}.

Since the rank is zero, the four torsion points on E/Q are the only
rational points on E.

Example 2.6.7. Let E : y2 = x3 + 2308x2 + 665858x. The primes 2
and 577 are the only prime divisors of (both) B and A2 − 4B. Thus

RE ≤ ν(A2 − 4B) + ν(B)− 1 = 2 + 2− 1 = 3.

The points P1 = (−1681, 25543), P2 = (−338, 26), and P3 = (577/16,
332929/64) are of infinite order and the subgroup of E(Q) generated
by P1, P2 and P3 is isomorphic to Z3. Therefore, the rank of E is
equal to 3.


