
Projective Space

C.1. The projective line

Let us begin with an example. Consider the function f(x) = 1
x . We

know from Calculus that f is continuous (and differentiable) on all of
its domain (i.e. R) except at x = 0. Would it be possible to extend
the real line, so that f(x) is continuous everywhere? The answer is
yes, it is possible, and the solution is to glue the “end” of the real line
at ∞ with the other “end”, at −∞. Formally, we need the projective
line, which is a line with points R∪ {∞}, i.e. a real line plus a single
point at infinity that ties the line together (into a circle).

The formal definition of the projective line is as follows. It may
seem a little confusing at first, but it is fairly easy to work and com-
pute with it. First, we need to define a relation between vectors of
real numbers in the plane. Let a, b, x, y be real numbers, such that
neither (x, y) nor (a, b) is the zero vector. We say that (x, y) ∼ (a, b)
if the vector (x, y) is a non-zero multiple of the vector (a, b). In other
words, if considered as points, (a, b) ∼ (x, y) if they lie in the same
line on the plane. Again:

(x, y) ∼ (a, b) if and only if there is λ ∈ R such that x = λa, y = λb.
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154 C. Projective Space

For instance (
√

2,
√

2) ∼ (1, 1). We denote by [x, y] the set of all
vectors (a, b) such that (x, y) ∼ (a, b):

[x, y] = {(a, b) : a, b ∈ R such that (a, b) 6= (0, 0) and (x, y) ∼ (a, b)}.

Finally, we define the real projective line by:

P1(R) = {[x, y] : x, y ∈ R with (x, y) 6= (0, 0)}.

If you think about it, P1(R) is the set of all lines through the origin
(each class [x, y] consists of all points -except the origin- on the line
that goes through (x, y) and (0, 0)). The important thing to notice
is that if [x, y] ∈ P1(R) and y 6= 0, then (x, y) ∼ (xy , 1), so the class
of [x, y] contains a unique representative of the form (a, 1), for some
a = x

y ∈ R. This allows the following decomposition of P1(R):

P1(R) = {[x, 1] : x ∈ R} ∪ {[1, 0]}.

The points {[x, 1]} form a real line and the point [1, 0] is called the
point at infinity (see Figure 1.)
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Figure 1. Some points in the projective line, e.g. [2, 3] ∈
P1(R), and their representatives of the form [x, 1], e.g. [ 2

3
, 1],

except for [1, 0].

Let us see that, with this definition, the function f : R → R,
f(x) = 1/x is continuous everywhere when extended to P1(R). We
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define instead an extended function F : P1(R)→ P1(R) by

F ([x, y]) = [y, x].

Notice that a point on the real line of P1, i.e. a point of the form [x, 1],
is sent to the point [1, x] of P1, and (1, x) ∼ ( 1

x , 1) as long as x 6= 0.
So [x, 1] with x 6= 0 is sent to [ 1

x , 1] via F (i.e. the real point x is
sent to 1

x ). Hence, F coincides with f on R−{0}. But F is perfectly
well defined on x = 0, i.e. on the point [0, 1], and F ([0, 1]) = [1, 0] so
that [0, 1] is sent to the point at infinity. Moreover, both sided limits
coincide:

lim
x→0+

F ([x, 1]) = lim
x→0−

F ([x, 1]) = F ([0, 1]) = [1, 0].

C.2. The projective plane

We may generalize the construction above of the projective line, in
order to construct a projective plane which will consist of a real plane
plus a number of points at infinity, one for each direction in the plane,
i.e. the projective plane will be a real plane plus a projective line of
points at infinity.

Let a, b, c, x, y, z ∈ R such that neither (a, b, c) nor (x, y, z) are
the zero vector:

(x, y, z) ∼ (a, b, c) if and only if there is λ ∈ R such that x = λa,
y = λb, z = λc.

We also define classes of similar vectors by:

[x, y, z] = {(a, b, c) : a, b, c ∈ R such that (a, b, c) 6= ~0 and (x, y, z) ∼
(a, b, c)}.

Notice that, as before, the class [x, y, z] contains all the points in
the line that goes through (x, y, z) and (0, 0, 0), except the origin. We
define the projective plane to be the collection of all such lines:

P2(R) = {[x, y, z] : x, y, z ∈ R such that (x, y, z) 6= (0, 0, 0)}.

If z 6= 0 then (x, y, z) ∼ (xz ,
y
z , 1). Thus:

P2(R) = {[x, y, 1] : x, y ∈ R} ∪ {[a, b, 0] : a, b ∈ R}.
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The points of the set {[x, y, 1] : x, y ∈ R} are in 1-to-1 correspondence
with the real plane, and the points in {[a, b, 0] : a, b ∈ R} are called
the points at infinity, and form a P1(R), a projective line.

One interesting consequence of the definitions is that any two
parallel lines in the real plane intersect at a point at infinity. Indeed,
let L : y = mx+b and L′ : y = mx+b′ be distinct parallel lines in the
real plane. If points in the real plane correspond to lines in P2(R),
lines in the real plane correspond to planes in P2(R):

L = {[x, y, z] : mx− y+ bz = 0}, L′ = {[x, y, z] : mx− y+ b′z = 0}.

What is L ∩ L′? The intersection points are those [x, y, z] such that
mx − y + bz = mx − y + b′z = 0, which implies that (b − b′)z = 0.
Since L 6= L′, we have b 6= b′ and, therefore, we must have z = 0.
Hence:

L ∩ L′ = {[x,mx, 0] : x ∈ R} = {[1,m, 0]}
so the intersection consists of a single point at infinity: [1,m, 0].

C.3. Over an arbitrary field

The projective line and plane can be defined over any field. Let K be
a field (e.g. K = Q,R,C or Fp). The usual affine plane (or Euclidean
plane) is defined by:

A2(K) = {(x, y) : x, y ∈ K}.

The projective plane over K is defined by:

P2(K) = {[x, y, z] : x, y, z ∈ K such that (x, y, z) 6= (0, 0, 0)}.

As before, (x, y, z) ∼ (a, b, c) if and only if there is λ ∈ K such that
(x, y, z) = λ · (a, b, c).

C.4. Curves in the projective plane

Let K be a field and let C be a curve in affine space, given by a
polynomial in two variables:

C : f(x, y) = 0

for some f(x, y) ∈ K[x, y], e.g. C : y2 − x3 − 1 = 0. We want to
extend C to a curve in the projective plane P2(K). In order to do
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this, we consider the points in the curve (x, y) to be points in the
plane [xz ,

y
z , 1] of P2(K). Thus, we have:

C :
(y
z

)2

−
(x
z

)3

− 1 = 0

or, equivalently, zy2 − x3 − z3 = 0. Notice that the polynomial
F (x, y, z) = zy2−x3−z3 is homogeneous in its variables (each mono-
mial has degree 3) and F (x, y, 1) = f(x, y). The curve in P2(K) given
by:

Ĉ : F (x, y, z) = zy2 − x3 − z3 = 0

is the curve we were looking for, which extends our original curve C in
the affine plane. Notice that if the points (x, y) ∈ C then [x, y, 1] ∈ Ĉ.
However, there may be some extra points in Ĉ which were not present
in C, namely those points of Ĉ at infinity. Recall that the points at
infinity are those with z = 0, so F (x, y, 0) = −x3 = 0 implies that
x = 0 also, and the only point at infinity in Ĉ is [0, 1, 0].

In general, if C ⊆ A2(K) is given by f(x, y) = 0, and d is the
highest degree of a monomial in f , then Ĉ ∈ P2(K) is given by

Ĉ : F (x, y, z) = 0

where F (x, y, z) = zd · f
(
x
z ,

y
z

)
. Conversely, if Ĉ : F (x, y, z) = 0 is

a curve in the projective plane, then C : F (x, y, 1) = 0 is a curve in
the affine plane. In this case, C is the projection of Ĉ onto the chart
z = 1; we may also look at other charts, e.g. x = 1 which would yield
a curve C ′ : F (1, y, z) = 0.

Here is another example. Let C be given by:

C : y − x2 = 0

so that C is a parabola. Then Ĉ is given by

Ĉ : F (x, y, z) = z2f
(x
z
,
y

z

)
= zy − x2 = 0.

The curve Ĉ has a unique point at infinity, namely [0, 1, 0]. This
means that the two “arms” of the parabola meet at a single point at
infinity. Thus, a parabola has the shape of an ellipse in P2(K). How
about hyperbolas? Let

C : x2 − y2 = 1.
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Then Ĉ : x2 − y2 = z2 and there are two points at infinity, namely
[1, 1, 0] and [1,−1, 0]. Thus, the four arms of the hyperbola in the
affine plane meet in two points, and the hyperbola also has the shape
of an ellipse in the projective plane, P2(K).

C.5. Singular and smooth curves

We say that a projective curve C : F (x, y, z) = 0 is singular at a point
P ∈ C if and only if ∂F∂x (P ) = ∂F

∂y (P ) = ∂F
∂z (P ) = 0. In other words,

C is singular at P if the tangent vector at P vanishes. Otherwise, we
say that C is non-singular at P . If C is non-singular at every point,
we say that C is a smooth (or non-singular) curve.
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Figure 2. The chart {[x, y, 1]} of the curve zy2 = x3.

For example, C : zy2 = x3 is singular at P = [0, 0, 1] because
F (x, y, z) = zy2 − x3 and:

∂F

∂x
= −x2,

∂F

∂y
= 2yz,

∂F

∂z
= y2

Thus, ∂F∂x (P ) = ∂F
∂y (P ) = ∂F

∂z (P ) = 0 for P = [0, 0, 1].
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Figure 3. The chart {[x, y, 1]} of the curve z2y2 = x4 + z4

(above, non-singular) and the chart {[x, 1, z]} (below, singu-

lar).

Here is another example: the curve D : z2y2 = x4 +z4 has partial
derivatives:

∂F

∂x
= −4x3,

∂F

∂y
= 2yz2,

∂F

∂z
= 2y2z − 4z3.

Thus, if P = [x, y, z] ∈ D(Q) is singular then

−4x3 = 0, 2yz2 = 0, and 2y2z − 4z3 = 0.

The first two equalities imply that x = 0 and yz = 0 (what would
happen if we were working over a field of characteristic 2, such as F2?).
If y = 0 then z = 0 by the third equation, but [0, 0, 0] is not a well-
defined point in P2(Q) so this is impossible. However, if x = z = 0
then y may take any value. Hence, P = [0, 1, 0] is a singular point.
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Notice that the affine curve that corresponds to the chart z = 1 of D,
given by y2 = x4 + 1, is non-singular at all points in the affine plane,
but it is singular at a point at infinity, namely P = [0, 1, 0].

An elliptic curve of the form E : y2 = x3+Ax+B, or in projective
coordinates given by zy2 = x3 + Axz2 + Bz3, is non-singular if and
only if 4A3 + 27B2 6= 0. The quantity ∆ = −16 · (4A3 + 27B2) is
called the discriminant of E.


