Algebra And Coding Work Sheet 01

Exercice 1. Let R be a ring and $(I_{\lambda})_{\lambda \in L}$ family of ideals of R. Proof that $I = \bigcap_{\lambda \in L} I_{\lambda}$ is an ideal of R.

Exercice 2. Let $m, n \in \mathbb{N}$ such that (m, n) = 1. Show that it exists non-trivial $\overline{x} \in \mathbb{Z}/_{m \cdot n\mathbb{Z}}$ such that

$$\overline{x}^2 = \overline{x}.$$

Indication : use Bezout theorem.

Exercice 3. Let R be a commutative ring and, I,J,K are ideals of R. Proof that

(a)
$$I \cdot (J + K) = I \cdot J + I \cdot K$$
.
(b) $I + J = A$ so $I \cdot J = I \cap J$.

Exercice 4. Let A,B,C be three rings and, $f : A \longrightarrow B$ and $g : B \longrightarrow C$ are homomorphisms of rings, we have

- (a) $g \circ f$ is an homomorphism.
- (b) If *f* is an isomorphism, so f^{-1} is an isomorphism.

Exercice 5. let R be an integral domain of characteristic p. So p = 0 or p is a prime number.

Exercice 6. let R be a principal domain and $a_1, \dots, a_n \in R$. The following properties are equivalents.

- (a) $gcd(a_1, \dots, a_n) = 1$.
- (b) There are elements $u_1, \dots, u_n \in R$ such that

$$a_1u_1 + \dots +, a_nu_n = 1.$$

Exercice 7. Let $a \in \mathbb{Z}$ and $\mathbb{Z}_{n\mathbb{Z}}$, $n \in \mathbb{N}$ is the quotient ring, we have

(a) \overline{a} is invertible iff gcd(a, n) = 1.

(b) $\mathbb{Z}_{n\mathbb{Z}}$ is a field iff *n* is prime.

Exercice 8. Let M be an ideal of R. M is maximal iff R_{M} is a field.

Exercice 9. Let $K \neq \{0\}$ be a commutative ring. K is a field, iff the only ideals of K are $\{0\}$ and K.