
Rings

2.1 Introduction
A ring can be thought of as a generalisation of the integers, Z. We can add and

multiply elements of a ring, and we are interested in such questions as factorisation

into primes, construction of “modular arithmetic”, and so on.

2.1.1 Definition of a ring
Our first class of structures are rings. A ring has two operations: the first is

called addition and is denoted by + (with infix notation); the second is called

multiplication, and is usually denoted by juxtaposition (but sometimes by · with

infix notation).

In order to be a ring, the structure must satisfy certain rules called axioms. We

group these into three classes. The name of the ring is R.

We define a ring to be a set R with two binary operations satisfying the fol-

lowing axioms:

Axioms for addition:

(A0) (Closure law) For any a,b ∈ R, we have a+b ∈ R.

(A1) (Associative law) For any a,b,c ∈ R, we have (a+b)+c = a+(b+c).

(A2) (Identity law) There is an element 0 ∈ R with the property that a+0 =
0 + a = a for all a ∈ R. (The element 0 is called the zero element of

R.)

(A3) (Inverse law) For any element a ∈ R, there is an element b ∈ R satis-

fying a+b = b+a = 0. (We denote this element b by −a, and call it

the additive inverse or negative of a.)
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(A4) (Commutative law) For any a,b ∈ R, we have a+b = b+a.

Axioms for multiplication:

(M0) (Closure law) For any a,b ∈ R, we have ab ∈ R.

(M1) (Associative law) For any a,b,c ∈ R, we have (ab)c = a(bc).

Mixed axiom:

(D) (Distributive laws) For any a,b,c ∈ R, we have (a+b)c = ac+bc and

c(a+b) = ca+ cb.

Remarks 1. The closure laws (A0) and (M0) are not strictly necessary. If + is

a binary operation, then it is a function from R×R to R, and so certainly a +b is

an element of R for all a,b ∈ R. We keep these laws in our list as a reminder.

2. The zero element 0 defined by (A2) and the negative −a defined by (A3)

are not claimed to be unique by the axioms. We will see later on that there is only

one zero element in a ring, and that each element has only one negative.

Axioms (M0) and (M1) parallel (A0) and (A1). Notice that we do not require

multiplicative analogues of the other additive axioms. But there will obviously be

some rings in which they hold. We state them here for reference.

Further multiplicative properties

(M2) (Identity law) There is an element 1 ∈ R such that a1 = 1a = a for all

a ∈ R. (The element 1 is called the identity element of R.)

(M3) (Inverse law) For any a∈R, if a �= 0, then there exists an element b∈R
such that ab = ba = 1. (We denote this element b by a−1, and call it

the multiplicative inverse of a.)

(M4) (Commutative law) For all a,b ∈ R, we have ab = ba.

A ring which satisfies (M2) is called a ring with identity; a ring which satisfies

(M2) and (M3) is called a division ring; and a ring which satisfies (M4) is called

a commutative ring. (Note that the term “commutative ring” refers to the fact that

the multiplication is commutative; the addition in a ring is always commutative!)

A ring which satisfies all three further properties (that is, a commutative division

ring) is called a field.
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2.1.2 Examples of rings

1. The integers
The most important example of a ring is the set Z of integers, with the usual

addition and multiplication. The various properties should be familiar to you; we

will simply accept that they hold. Z is a commutative ring with identity. It is not a

division ring because there is no integer b satisfying 2b = 1. This ring will be our

prototype for several things in the course.

Note that the set N of natural numbers, or non-negative integers, is not a ring,

since it fails the inverse law for addition. (There is no non-negative integer b such

that 2+b = 0.)

2. Other number systems
Several other familiar number systems, namely the rational numbers Q, the

real numbers R, and the complex numbers C, are fields. Again, these properties

are assumed to be familiar to you.

3. The quaternions
There do exist division rings in which the multiplication is not commutative,

that is, which are not fields, but they are not so easy to find. The simplest example

is the ring of quaternions, discovered by Hamilton in 1843.

On 16 October 1843 (a Monday) Hamilton

was walking in along the Royal Canal with

his wife to preside at a Council meeting of

the Royal Irish Academy. Although his wife

talked to him now and again Hamilton

hardly heard, for the discovery of the

quaternions, the first noncommutative [ring]

to be studied, was taking shape in his mind.

He could not resist the impulse to carve the

formulae for the quaternions in the stone of

Broome Bridge (or Brougham Bridge as he

called it) as he and his wife passed it.

Instead of adding just one element i to the real numbers, Hamilton added three.

That is, a quaternion is an object of the form a+bi+ cj+dk, where

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

It can be shown that all the axioms (A0)–(A4), (M0)–(M3) and (D) are satisfied.
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For example, if a,b,c,d are not all zero, then we have

(a+bi+ cj+dk)
(

a−bi− cj−dk

a2 +b2 + c2 +d2

)
= 1.

The ring of quaternions is denoted by H, to commemorate Hamilton.

4. Matrix rings
We briefly defined addition and multiplication for matrices in the last chapter.

The formulae for addition and multiplication of n×n matrices, namely

(A+B)i j = Ai j +Bi j, (AB)i j =
n

∑
k=1

AikBk j,

just depend on the fact that we can add and multiply the entries. In principle

these can be extended to any system in which addition and multiplication are

possible. However, there is a problem with multiplication, because of the ∑n
k=1,

which tells us to add up n terms. In general we can only add two things at a time,

since addition is a binary operation, so we have to make the convention that, for

example, a+b+ c means (a+b)+ c, a+b+ c+d means (a+b+ c)+d, and so

on. We will return to this point in the next subsection.

Now we have the following result:

Proposition 2.1 Let R be a ring. Then the set Mn(R) of n× n matrices over R,
with addition and multiplication defined in the usual way, is a ring. If R has an
identity, then Mn(R) has an identity; but it is not in general a commutative ring or
a division ring.

We will look at the proof later, once we have considered addition of n terms.

5. Polynomial rings
In much the same way, the usual rules for addition of polynomials,(

∑aixi)+
(
∑bixi) = ∑(ai +bi)xi,

(
∑aixi)(∑bixi) = ∑dixi,

where

di =
i

∑
k=0

akbi−k,

can be extended to polynomials with coefficients in any algebraic structure in

which addition and multiplication are defined. As for matrices, we have to be able

to add an arbitrary number of terms to make sense of the definition of multiplica-

tion. We have the result:
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Proposition 2.2 Let R be a ring, then the set R[x] of polynomials over R, with
addition and multiplication defined in the usual way, is a ring. If R is commutative,
then so is R[x]; if R has an identity, then so does R[x]; but it is not a division ring.

Again we defer looking at the proof.

6. Rings of sets

The idea of forming a ring from operations

on sets is due to George Boole, who

published in 1854 An investigation into the
Laws of Thought, on Which are founded the
Mathematical Theories of Logic and
Probabilities. Boole approached logic in a

new way reducing it to algebra, in much the

same way as Descartes had reduced

geometry to algebra.

The familiar set operations of union and intersection satisfy some but not all

of the ring axioms. They are both commutative and associative, and satisfy the

distributive laws both ways round; but they do not satisfy the identity and inverse

laws for addition.

Boole’s algebra of sets works as follows. Let P(A), the power set of A, be

the set of all subsets of the set A. Now we define addition and multiplication on

P(A) to be the operations of symmetric difference and intersection respectively:

x+ y = x�y, xy = x∩ y.

Proposition 2.3 The set P(A), with the above operations, is a ring; it is commu-
tative, has an identity element, but is not a field if |A| > 1. It satisfies the further
conditions x+ x = 0 and xx = x for all x.

We won’t give a complete proof, but note that the empty set is the zero element

(since x� /0 = x for any set x), while the additive inverse −x of x is equal to x
itself (since x�x = /0 for any x). Check the other axioms for yourself with Venn

diagrams.

A ring satisfying the further condition that xx = x for all x is called a Boolean
ring.
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7. Zero rings
Suppose that we have any set R with a binary operation + satisfying the ad-

ditive axioms (A0)–(A4). (We will see later in the course that such a structure is

called an abelian group.) Then we can make R into a ring by defining xy = 0 for

all x,y ∈ R. This is not a very exciting rule for multiplication, but it is easy to

check that all remaining axioms are satisfied.

A ring in which all products are zero is called a zero ring. It is commutative,

but doesn’t have an identity (if |R| > 1).

8. Direct sum
Let R and S be any two rings. Then we define the direct sum R⊕S as follows.

As a set, R⊕S is just the cartesian product R×S. The operations are given by the

rules

(r1,s1)+(r2,s2) = (r1 + r2,s1 + s2), (r1,s1)(r2,s2) = (r1r2,s1s2).

(Note that in the ordered pair (r1 + r2,s1 + s2), the first + denotes addition in R,

and the second + is addition in S.)

Proposition 2.4 If R and S are rings, then R⊕S is a ring. If R and S are commu-
tative, then so is R⊕S; if R and S have identities, then so does R⊕S; but R⊕S is
not a division ring if both R and S have more than one element.

The proof is straightforward checking.

9. Modular arithmetic
Let Zn denote the set of all congruence classes modulo n, where n is a positive

integer. We saw in the first chapter that there are n congruence classes; so Zn is a

set with n elements:

Zn = {[0]n, [1]n, . . . , [n−1]n}.
Define addition and multiplication on Zn by the rules

[a]n +[b]n = [a+b]n, [a]n[b]n = [ab]n.

There is an important job to do here: we have to show that these definitions

don’t depend on our choice of representatives of the equivalence classes.

Proposition 2.5 For any positive integer n, Zn is a commutative ring with identity.
It is a field if and only if n is a prime number.
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Here, for example, are the addition and multiplication tables of the ring Z5.

We simplify the notation by writing x instead of [x]5.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Note, for example, that 2−1 = 3 in this ring.

10. Rings of functions
The sum and product of continuous real functions are continuous. So there is

a ring C(R) of coninuous functions from R to R, with

( f +g)(x) = f (x)+g(x), ( f g)(x) = f (x)g(x).

There are several related rings, such as C1(R) (the ring of differentiable functions),

C0(R) (the ring of continuous functions satisfying f (x) → 0 as x → ±∞), and

C([a,b]) (the ring of continuous functions on the interval [a,b]. All these rings are

commutative, and all except C0(R) have an identity (the constant function with

value 1).

These rings are the subject-matter of Functional Analysis.

2.1.3 Properties of rings
We have some business deferred from earlier to deal with. After that, we prove

some basic properties of rings, starting from the axioms.

Uniqueness of zero element
The zero element of a ring is unique. For suppose that there are two zero

elements, say z1 and z2. (This means that a + z1 = z1 + a = a for all a and also

a+ z2 = z2 +a = a for all a.) Then

z1 = z1 + z2 = z2.

Exercise: Show that the identity element of a ring, if it exists, is unique.
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Uniqueness of additive inverse
The additive inverse of an element a is unique. For suppose that b and c are

both additive inverses of a. (This means that a+b = b+a = 0 and a+c = c+a = 0

– we know now that there is a unique zero element, and we call it 0.) Then

b = b+0 = b+(a+ c) = (b+a)+ c = 0+ c = c,

where we use the associative law in the third step.

Exercise: Show that the multiplicative inverse of an element of a ring, if it

exists, is unique.

Adding more than two elements
The associative law tells us that if we have to add three elements, then the two

possible ways of doing it, namely (a + b)+ c and a +(b + c), give us the same

result. For more than three elements, there are many different ways of adding

them: we have to put in brackets so that the sum can be worked out by adding two

elements at a time. For example, there are five ways of adding four elements:

((a+b)+c)+d, (a+(b+c))+d, (a+b)+(c+d), a+((b+c)+d), a+(b+(c+d)).

These are all equal. For the associative law (a +b)+ c) = a +(b + c) shows that

the first and second are equal, while the associative law for b,c,d shows that the

fourth and fifth are equal. Also, putting x = a+b, we have

((a+b)+ c)+d = (x+ c)+d = x+(c+d) = (a+b)+(c+d),

so the first and third are equal; and similarly the third and fifth are equal.

In general we have the following. The proof works for any associative binary

operation.

Proposition 2.6 Let ∗ be an associative binary operation on a set A, and a1, . . . ,an ∈
A. Then the result of evaluating a1 ∗a2 ∗ · · · ∗an, by adding brackets in any way to
make the expression well-defined, is the same, independent of bracketing.

Proof The proof is by induction on the number of terms. For n = 2 there is

nothing to prove; for n = 3, the statement is just the associative law; and for n = 4,

we showed it above. Suppose that the result is true for fewer than n terms. Suppose

now that we have two different bracketings of the expression a1 ∗ a2 ∗ · · · ∗ an.

The first will have the form (a1 ∗ · · · ∗ ai) ∗ (ai+1 ∗ · · · ∗ an), with the terms inside

the two sets of brackets themselves bracketed in some way. By induction, the

result is independent of the bracketing of a1, . . . ,ai and of ai+1, . . . ,an. Similarly,

the second expression will have the form (a1 ∗ · · · ∗ a j) ∗ (a j+1 ∗ · · · ∗ an), and is

independent of the bracketing of a1, . . . ,a j and of a j+1, . . . ,an.
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Case 1 : i = j. Then the two expressions are obviously equal.

Case 2 : i �= j; suppose, without loss, that i < j. Then the first expression

can be written as

(a1 ∗ · · · ∗ai)∗ ((ai+1 ∗ · · · ∗a j)∗ (a j+1 ∗ · · · ∗an)),

and the second as

((a1 ∗ · · · ∗ai)∗ (ai+1 ∗ · · · ∗a j))∗ (a j+1 ∗ · · · ∗an),

where each expression is independent of any further bracketing. By the associative

law, these two expressions are equal: they are x ∗ (y ∗ z) and (x ∗ y) ∗ z, where

x = a1 ∗ · · · ∗ai, y = ai+1 ∗ · · · ∗a j, and z = a j+1 ∗ · · · ∗an.

Note that this result applies to both addition and multiplication in a ring.

As usual, we denote a1 +a2 + · · ·+an by
n

∑
i=1

ai.

Cancellation laws

Proposition 2.7 In a ring R, if a+x = b+x, then a = b. Similarly, if x+a = x+b,
then a = b.

Proof Suppose that a+ x = b+ x, and let y = −x. Then

a = a+0 = a+(x+ y) = (a+ x)+ y = (b+ x)+ y = b+(x+ y) = b+0 = b.

The other law is proved similarly, or by using the commutativity of addition.

These facts are the cancellation laws.

A property of zero
One familiar property of the integers is that 0a = 0 for any integer a. We don’t

have to include this as an axiom, since it follows from the other axioms. Here

is the proof. We have 0 + 0 = 0, so 0a + 0 = 0a = (0 + 0)a = 0a + 0a, by the

distributive law; so the cancellation law gives 0 = 0a. Similarly a0 = 0.

It follows that if R has an identity 1, and |R| > 1, then 1 �= 0. For choose any

element a �= 0; then 1a = a and 0a = 0. It also explains why we have to exclude 0

in condition (M3): 0 cannot have a multiplicative inverse.
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Commutativity of addition
It turns out that, in a ring with identity, it is not necessary to assume that

addition is commutative: axiom (A4) follows from the other ring axioms together

with (M2).

For suppose that (A0)–(A3), (M0)–(M2) and (D) all hold. We have to show

that a+b = b+a. Consider the expression (1+1)(a+b). We can expand this in

two different ways by the two distributive laws:

(1+1)(a+b) = 1(a+b)+1(a+b) = a+b+a+b,

(1+1)(a+b) = (1+1)a+(1+1)b = a+a+b+b.

Hence a + b + a + b = a + a + b + b, and using the two cancellation laws we

conclude that b+a = a+b.

This argument depends on the existence of a multiplicative identity. If we take

a structure with an operation + satisfying (A0)–(A3) (we’ll see later that such a

structure is known as a group), and apply the “zero ring” construction to it (that

is, ab = 0 for all a,b), we obtain a structure satisfying all the ring axioms except

(A4).

Boolean rings
We saw that a Boolean ring is a ring R in which xx = x for all x ∈ R.

Proposition 2.8 A Boolean ring is commutative and satisfies x + x = 0 for all
x ∈ R.

Proof We have (x + y)(x + y) = x + y. Expanding the left using the distributive

laws, we find that

xx+ xy+ yx+ yy = x+ y.

Now xx = x and yy = y. So we can apply the cancellation laws to get

xy+ yx = 0.

In particular, putting y = x in this equation, we have xx+xx = 0, or x+x = 0, one

of the things we had to prove.

Taking this equation and putting xy in place of x, we have

xy+ xy = 0 = xy+ yx,

and then the cancellation law gives us xy = yx, as required.

We saw that the power set of any set, with the operations of symmetric dif-

ference and intersection, is a Boolean ring. Another example is the ring Z2 (the

integers mod 2).
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2.1.4 Matrix rings
In view of Proposition 2.6, the definition of the product of two n×n matrices now

makes sense: AB = D, where

Di j =
n

∑
k=1

AikBk j.

So we are in the position to prove Proposition 2.1.

A complete proof of this proposition involves verifying all the ring axioms.

The arguments are somewhat repetitive; I will give proofs of two of the axioms.

Axiom (A2): Let 0 be the zero element of the ring R, and let O be the zero

matrix in Mn(R), satisfying Oi j = 0 for all i, j. Then O is the zero element of

Mn(R): for, given any matrix A,

(O+A)i j = Oi j +Ai j = 0+Ai j = Ai j, (A+O)i j = Ai j +Oi j = Ai j +0 = Ai j,

using the properties of 0 ∈ R. So O+A = A+O = A.

Axiom (D): the (i, j) entry of A(B+C) is

n

∑
k=1

Aik(B+C)k j =
n

∑
k=1

AikBk j +AikCk j,

by the distributive law in R; and the (i, j) entry of AB+AC is

n

∑
k=1

AikBk j +
n

∑
k=1

AikCk j.

Why are these two expressions the same? Let us consider the case n = 2. The first

expression is

Ai1B1 j +Ai1C1 j +Ai2B2 j +Ai2C2 j,

while the second is

Ai1B1 j +Ai2B2 j +Ai1C1 j +Ai2C2 j.

(By Proposition 2.6, the bracketing is not significant.) Now the commutative law

for addition allows us to swap the second and third terms of the sum; so the two

expressions are equal. Hence A(B +C) = AB + AC for any matrices A,B,C. For

n > 2, things are similar, but the rearrangement required is a bit more complicated.

The proof of the other distributive law is similar.

Observe what happens in this proof: we use properties of the ring R to deduce

properties of Mn(R). To prove the distributive law for Mn(R), we needed the dis-

tributive law and the associative and commutative laws for addition in R. Similar

things happen for the other axioms.
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2.1.5 Polynomial rings
What exactly is a polynomial? We deferred this question before, but now is the

time to face it.

A polynomial ∑aixi is completely determined by the sequence of its coeffi-

cients a0,a1, . . .. These have the property that only a finite number of terms in the

sequence are non-zero, but we cannot say in advance how many. So we make the

following definition:

A polynomial over a ring R is an infinite sequence

(ai)i≥0 = (a0,a1, . . .)

of elements of R, having the property that only finitely many terms are non-zero;

that is, there exists an n such that ai = 0 for all i > n. If an is the last non-zero

term, we say that the degree of the polynomial is n. (Note that, according to this

definition, the all-zero sequence does not have a degree.)

Now the rules for addition and multiplication are

(ai)+(bi) = (ci) where ci = ai +bi,

(ai)(bi) = (di) where di =
i

∑
j=0

a jbi− j.

Again, the sum in the definition of multiplication is justified by Proposition 2.6.

We think of the polynomial (ai)i≥0 of degree n as what we usually write as

∑n
i=0 aixi; the rules we gave agree with the usual ones.

Now we can prove Proposition 2.2, asserting that the set of polynomials over a

ring R is a ring. As for matrices, we have to check all the axioms, which involves

a certain amount of tedium. The zero polynomial required by (A2) is the all-zero

sequence. Here is a proof of (M1). You will see that it involves careful work with

dummy subscripts!

We have to prove the associative law for multiplication. So suppose that f =
(ai), g = (bi) and h = (ci). Then the ith term of f g is ∑i

j=0 a jbi− j, and so the ith
term of ( f g)h is

i

∑
k=0

(
k

∑
j=0

a jbk− j

)
ci−k.

Similarly the ith term of f (gh) is

i

∑
s=0

as

(
i−s

∑
t=0

btci−s−t

)
.

Each term on both sides has the form apbqcr, where p,q,r ≥ 0 and p+q+ r = i.
(In the first expression, p = j, q = k− j, r = i− k; in the second, p = s, q = t,
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r = i− s− t.) So the two expressions contain the same terms in a different order.

By the associative and commutative laws for addition, they are equal.

2.2 Subrings

2.2.1 Definition and test
Suppose that we are given a set S with operations of addition and multiplication,

and we are asked to prove that it is a ring. In general, we have to check all the

axioms. But there is a situation in which things are much simpler: this is when

S is a subset of a set R which we already know to be a ring, and the addition and

multiplication in S are just the restrictions of the operations in R (that is, to add

two elements of S, we regard them as elements of R and use the addition in R).

Definition Let R be a ring. A subring of R is a subset S of R which is a ring in

its own right with respect to the restrictions of the operations in R.

What do we have to do to show that S is a subring?

• The associative law (A1) holds in S. For, if a,b,c ∈ S, then we have a,b,c ∈
R (since S ⊆ R), and so

(a+b)+ c = a+(b+ c)

since R satisfies (A1) (as we are given that it is a ring).

• Exactly the same argument shows that the commutative law for addition

(A4), the associative law for multiplication (M1), and the distributive laws

(D), all hold in S.

• This leaves only (A0), (A2), (A3) and (M0) to check.

Even here we can make a simplification, if S �= /0. For suppose that (A0) and

(A3) hold in S. Given a ∈ S, the additive inverse −a belongs to S (since we are

assuming (A3)), and so 0 = a+(−a) belongs to S (since we are assuming (A0)).

Thus (A2) follows from (A0) and (A3).

We state this as a theorem:

Theorem 2.9 (First Subring Test) Let R be a ring, and let S be a non-empty sub-
set of R. Then S is a subring of R if the following condition holds:

for all a,b ∈ S, we have a+b,ab,−a ∈ S.
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Example We show that the set S of even integers is a ring. Clearly it is a non-

empty subset of the ring Z of integers. Now, if a,b ∈ S, say a = 2c and b = 2d,

we have

a+b = 2(c+d) ∈ S, ab = 2(2cd) ∈ S, −a = 2(−c) ∈ S,

and so S is a subring of Z, and hence is a ring.

The theorem gives us three things to check. But we can reduce the number

from three to two. We use a−b as shorthand for a +(−b). In the next proof we

need to know that −(−b) = b. This holds for the following reason. We have, by

(A3),

b+(−b) = (−b)+b = 0,

so that b is an additive inverse of −b. Also, of course, −(−b) is an additive

inverse of −b. By the uniqueness of additive inverse, −(−b) = b, as required. In

particular, a− (−b) = a+(−(−b)) = a+b.

Theorem 2.10 (Second Subring Test) Let R be a ring, and let S be a non-empty
subset of R. Then S is a subring of R if the following condition holds:

for all a,b ∈ S, we have a−b,ab ∈ S.

Proof Let S satisfy this condition: that is, S is closed under subtraction and mul-

tiplication. We have to verify that it satisfies the conditions of the First Subring

Test. Choose any element a ∈ S (this is possible since S is non-empty). Then

the hypothesis of the theorem shows that 0 = a−a ∈ S. Applying the hypothesis

again shows that −a = 0− a ∈ S. Finally, if a,b ∈ S, then −b ∈ S (by what has

just been proved), and so a+b = a− (−b) ∈ S. So we are done.

2.2.2 Cosets
Suppose that S is a subring of R. We now define a partition of R, one of whose

parts is S. Remember that, by the Equivalence Relation Theorem, in order to

specify a partition of R, we must give an equivalence relation on R.

Let ≡S be the relation on R defined by the rule

a ≡S b if and only if b−a ∈ S.

We claim that ≡S is an equivalence relation.

Reflexive: for any a ∈ R, a−a = 0 ∈ S, so a ≡S a.

Symmetric: take a,b ∈ R with a ≡S b, so that b−a ∈ S. Then a−b =−(b−a)∈
S, so b ≡S a.
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Transitive: take a,b,c ∈ R with a ≡S b and b ≡S c. Then b− a,c− b ∈ S. So

c−a = (c−b)+(b−a) ∈ S, so a ≡S c.

So ≡S is an equivalence relation. Its equivalence classes are called the cosets
of S in R.

Example Let n be a positive intger. Let R = Z and S = nZ, the set of all mul-

tiples of n. Then S is a subring of R. (By the Second Subring Test, if a,b ∈ S,

say a = nc and b = nd, then a− b = n(c− d) ∈ S and ab = n(ncd) ∈ S.) In this

case, the relation ≡S is just congruence mod n, since a ≡S b if and only if b−a is

a multiple of n. The cosets of S are thus precisely the congruence classes mod n.

An element of a coset is called a coset representative. As we saw in the first

chapter, it is a general property of equivalence relations that any element can be

used as the coset representative: if b is in the same equivalence class as a, then a
and b define the same equivalence classes. We now give a description of cosets.

If S is a subset of R, and a ∈ R, we define S +a to be the set

S +a = {s+a : s ∈ S}

consisting of all elements that we can get by adding a to an element of S.

Proposition 2.11 Let S be a subring of R, and a ∈ R. Then the coset of R contain-
ing a is S +a.

Proof Let [a] denote the coset containing a, that is,

[a] = {b ∈ R : a ≡S b} = {b ∈ R : b−a ∈ S}.

We have to show that [a] = S +a.

First take b ∈ [a], so that b−a ∈ S. Let s = b−a. Then b = s+a ∈ S +a.

In the other direction, take b ∈ S + a, so that b = s + a for some s ∈ S. Then

b−a = (s+a)−a = s ∈ S, so b ≡S a, that is, b ∈ [a].
So [a] = S +a, as required.

Any element of a coset can be used as its representative. That is, if b ∈ S +a,

then S +a = S +b.

Here is a picture.
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R
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S +a
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S +b

Note that S + 0 = S, so the subring S is a coset of itself, namely the coset

containing 0.

In particular, the congruence class [a]n in Z is the coset nZ+ a, consisting of

all elements obtained by adding a multiple of n to a. So the ring Z is partitioned

into n cosets of nZ.

2.3 Homomorphisms and quotient rings

2.3.1 Isomorphism
Here are the addition and multiplication tables of a ring with two elements, which

for now I will call o and i.

+ o i
o o i
i i o

· o i
o o o
i o i

You may recognise this ring in various guises: it is the Boolean ring P(X), where

X = {x} is a set with just one element x; we have o = /0 and i = {x}. Alternatively

it is the ring of integers mod 2, with o = [0]2 and i = [1]2.

The fact that these two rings have the same addition and multiplication tables

shows that, from an algebraic point of view, we cannot distinguish between them.

We formalise this as follows. Let R1 and R2 be rings. Let θ : R1 → R2 be

a function which is one-to-one and onto, that is, a bijection between R1 and R2.

Now we denote the result of applying the function θ to an element r ∈ R1 by rθ or

(r)θ rather than by θ(r); that is, we write the function on the right of its argument.

Now we say that θ is an isomorphism from R1 to R2 if it is a bijection which

satisfies

(r1 + r2)θ = r1θ + r2θ , (r1r2)θ = (r1θ)(r2θ). (2.1)

This means that we “match up” elements in R1 with elements in R2 so that addi-

tion and multiplication work in the same way in both rings.
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Example To return to our earlier example, let R1 = P({x}) and let R2 be the

ring of integers mod 2, and define a function θ : R1 → R2 by

/0θ = [0]2, {x}θ = [1]2.

Then θ is an isomorphism.

We say that the rings R1 and R2 are “isomorphic” if there is an isomorphism

from R1 to R2. The word “isomorphic” means, roughly speaking, “the same

shape”: if two rings are isomorphic then they can be regarded as identical from

the point of view of Ring Theory, even if their actual elements are quite different

(as in our example). We could say that Ring Theory is the study of properties of

rings which are the same in isomorphic rings.

So, for example, if R1 and R2 are isomorphic then:

• If R1 is commutative, then so is R2, and vice versa; and the same holds for

the property of being a ring with identity, a division ring, a Boolean ring, a

zero ring, etc.

• However, the property of being a ring of matrices, or a ring of polynomials,

etc., are not necessarily shared by isomorphic rings.

We use the notation R1
∼= R2 to mean “R1 is isomorphic to R2”. Remember

that isomorphism is a relation between two rings. If you are given two rings R1

and R2 and asked whether they are isomorphic, do not say “R1 is isomorphic but

R2 is not”.

2.3.2 Homomorphisms
An isomorphism is a function between rings with two properties: it is a bijection

(one-to-one and onto), and it preserves addition and multiplication (as expressed

by equation (2.1)). A function which preserves addition and multiplication but

is not necessarily a bijection is called a homomorphism. Thus, a homomorphism
from R1 to R2 is a function θ : R1 → R2 satisfying

(r1 + r2)θ = r1θ + r2θ , (r1r2)θ = (r1θ)(r2θ).

You should get used to these two long words, and two others. A function θ : R1 →
R2 is

• a homomorphism if it satisfies (2.1); (homo=similar)

• a monomorphism if it satisfies (2.1) and is one-to-one; (mono=one)

• an epimorphism if it satisfies (2.1) and is onto; (epi=onto)
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• an isomorphism if it satisfies (2.1) and is one-to-one and onto (iso=equal)

For example, the function from the ring Z to the ring of integers mod 2, which

takes the integer n to its congruence class [n]2 mod 2, is a homomorphism. Basi-

cally this says that, if we only care about the parity of an integer, its congruence

mod 2, then the addition and multiplication tables are

+ even odd

even even odd

odd odd even

· even odd

even even even

odd even odd

and this ring is the same as the one at the start of this section.

Let θ : R1 → R2 be a homomorphism. The image of θ is, as usual, the set

Im(θ) = {s ∈ R2 : s = rθ for some r ∈ R1}.
We define the kernel of θ to be the set

Ker(θ) = {r ∈ R1 : rθ = 0},
the set of elements of R1 which are mapped to the zero element of R2 by θ . You

will have seen a definition very similar to this in Linear Algebra.

The image and kernel of a homomorphism have an extra property. This is not

the final version of this theorem: we will strengthen it in two ways in the next two

sections. First, a lemma:

Lemma 2.12 Let θ : R1 → R2 be a homomorphism. Then

(a) 0θ = 0;

(b) (−a)θ = −(aθ) for all a ∈ R1;

(c) (a−b)θ = aθ −bθ for all a,b ∈ R1.

Proof We have

0+0θ = 0θ = (0+0)θ = 0θ +0θ ,

and the cancellation law gives 0θ = 0.

Then

aθ +(−a)θ = (a−a)θ = 0θ = 0,

so (−a)θ is the additive inverse of aθ , that is, (−1)θ = −(aθ).
Finally, (a−b)θ = aθ +(−b)θ = aθ −bθ .

Proposition 2.13 Let θ : R1 → R2 be a homomorphism. Then
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(a) Im(θ) is a subring of R2;

(b) Ker(θ) is a subring of R1.

Proof We use the Second Subring Test.

(a) First notice that Im(θ) �= /0, since Im(θ) contains 0, by the Lemma.

Take a,b ∈ Im(θ), say, a = xθ and b = yθ . Then −b = (−y)θ , so

a−b = xθ +(−y)θ = (x− y)θ ∈ Im(θ).

Also ab = (xθ)(yθ) = (xy)θ ∈ Im(θ). So Im(θ) is a subring of R2.

(b) First notice that Ker(θ) �= /0, since Ker(θ) contains 0, by the Lemma.

Take a,b ∈ Ker(θ), so that aθ = bθ = 0. Then

(a−b)θ = aθ −bθ = 0−0 = 0,

(ab)θ = (aθ)(bθ) = 0 ·0 = 0,

so Ker(θ) is a subring.

2.3.3 Ideals
An ideal in a ring is a special kind of subring.

Let S be a subring of R. We say that S is an ideal if, for any a ∈ S and r ∈ R,

we have ar ∈ S and ra ∈ S.

For example, let R = Z and S = nZ for some positive integer n. We know that

S is a subring of R. Choose a ∈ S, say a = nc for some c ∈ Z. Then ar = ra =
n(cr) ∈ S. So S is an ideal.

Any ring R has two trivial ideals: the whole ring R is an ideal; and the set {0}
consisting only of the zero element is an ideal.

There is an ideal test similar to the subring tests. We give just one form.

Theorem 2.14 (Ideal Test) Let R be a ring, and S a non-empty subset of R. Then
S is an ideal if the following conditions hold:

(a) for all a,b ∈ S, we have a−b ∈ S;

(b) for all a ∈ S and r ∈ R, we have ar,ra ∈ S.

Proof Take a,b ∈ S. Then ab ∈ S (this is a special case of (b), with r = b). So by

the Second Subring Test, S is a subring. Then by (b), it is an ideal.
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Now we can strengthen the statement that the kernel of a homomorphism is a

subring.

Proposition 2.15 Let θ : R1 → R2 be a homomorphism. Then Ker(θ) is an ideal
in R1.

Proof We already know that it is a subring, so we only have to check the last part

of the definition. So take a ∈ Ker(θ) (so that aθ = 0), and r ∈ R1. Then

(ar)θ = (aθ)(rθ) = 0(rθ) = 0,

and similarly (ra)θ = 0. So ar,ra ∈ Ker(θ).

We will see in the next section that it goes the other way too: every ideal is

the kernel of a homomorphism. So “ideals” are the same thing as ”kernels of

homomorphisms”.

2.3.4 Quotient rings
Let I be an ideal of a ring R. We will define a ring, which we call the quotient ring
or factor ring, of R by I, and denote by R/I.

The elements of R/I are the cosets of I in R. Thus each element of R/I is a set

of elements (an equivalence class) of R. Remember that each coset can be written

as I + a for some a ∈ R. Now we have to define addition and multiplication. We

do this by the rules

(I +a)+(I +b) = I +(a+b),
(I +a)(I +b) = I +ab.

There is one important job that we have to do to prove that this is a good

definition. Remember that any element of a coset can be used as a representative.

So you might use the representatives a and b, while I use the representatives a′
and b′ for the same cosets. We need to show that the definitions don’t depend on

these choices; that is, we have to show that

I+a = I+a′ and I+b = I+b′ imply I+(a+b) = I+(a′+b′) and I+ab = I+a′b′.

So suppose that I +a = I +a′ and I +b = I +b′. Then a′ ∈ I +a, so a′ = s+a
for some s ∈ I. Similarly, b′ = t +b for some t ∈ I. Now

a′ +b′ = (s+a)+(t +b) = (s+ t)+(a+b) ∈ I +(a+b),
a′b′ = (s+a)(t +b) = st + sb+ ta+ab ∈ I +ab,
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by using the associative and commutative laws for addition and the distributive

laws. So the result is proved, once we justify the last step by showing that s+ t ∈ I
and st + sb + at ∈ I. Remember that s, t ∈ I, so that s + t ∈ I (as I is a subring);

also st ∈ I (since I is a subring) and sb ∈ I and at ∈ I (since I is an ideal), so the

sum of these three expressions is in I.

Proposition 2.16 If I is an ideal of the ring R, then the set R/I, with operations of
addition and multiplication defined as above, is a ring, and the map θ : R → R/I
defined by rθ = I + r is a homomorphism whose kernel is I.

Proof We have well-defined operations of addition and multiplication, so (A0)

and (M0) hold. The proofs of the other axioms are all very similar. Here is a proof

of the first distributive law. Take three elements of R/I (that is, three cosets!), say

I +a, I +b, I + c. Then

((I +a)+(I +b))(I + c) = (I +(a+b))(I + c)
= I +(a+b)c
= I +(ac+bc)
= (I +ac)+(I +bc)
= (I +a)(I + c)+(I +b)(I + c).

Here we use the distributive law in R to get from the second line to the third, while

the other steps just use the definitions of addition and multiplication in R/I.

Next we show that θ is a homomorphism. This is true by definition:

(a+b)θ = (I +a)+(I +b) = I +(a+b) = (a+b)θ ,

(ab)θ = (I +a)(I +b) = I +(ab) = (ab)θ .

Finally we calculate Ker(θ). There is one important thing to note. The zero

element of R/I is the coset I +0. This is just the ideal I itself! So

Ker(θ) = {a ∈ R : aθ = 0} = {a ∈ R : I +a = I} = I,

since I +a = I means that a is a representative for the coset I, that is, a ∈ I.

The map θ in this result is called the natural homomorphism from R to R/I.

We see that, if I is any ideal of R, then I is the kernel of the natural homomorphism

from R to R/I.

34 CHAPTER 2. RINGS

2.3.5 The Isomorphism Theorems
The Isomorphism Theorems are a number of results which look more closely at

a homomorphism. The first one makes more precise the results we saw earlier

about the image and kernel of a homomorphism.

Theorem 2.17 (First Isomorphism Theorem) Let R1 and R2 be rings, and let
θ : R1 → R2 be a homomorphism. Then

(a) Im(θ) is a subring of R2;

(b) Ker(θ) is an ideal of R1;

(c) R1/Ker(θ) ∼= Im(θ).

Proof We already proved the first two parts of this theorem, in Propositions

2.13 and 2.15. We have to prove (c). Remember that this means that the rings

R1/Ker(θ) (the quotient ring, which is defined because Ker(θ) is an ideal in R1)

and Im(θ) (a subring of R2) are isomorphic. We have to construct a map φ be-

tween these two rings which is one-to-one and onto, and is a homomorphism.

Put I = Ker(θ), and define φ by the rule

(I + r)φ = rθ

for r ∈ R1. On the face of it, this might depend on the choice of the coset rep-

resentative r. So first we have to prove that, if I + r = I + r′, then rθ = r′θ . We

have

I + r = I + r′ ⇒ r′ = s+ r for some s ∈ I = Ker(θ)
⇒ r′θ = sθ + rθ = 0+ rθ = rθ ,

as required. So indeed φ is well defined.

In fact this argument also reverses. If rθ = r′θ , then (r′ − r)θ = r′θ − rθ = 0,

so r′ − r ∈ Ker(θ). This means, by definition, that r and r′ lie in the same coset of

Ker(θ) = I, so that I + r = I + r′. This shows that φ is one-to-one.

To show that φ is onto, take s ∈ Im(θ). Then s = rθ for some r ∈ R, and we

have s = rθ = (I + r)φ . So Im(φ) = Im(θ) as required.

Finally,

((I + r1)+(I + r2))φ = (r1 + r2)θ = (r1θ)+(r2θ) = (I + r1)φ +(I + r2)φ ,

((I + r1)(I + r2))φ = (r1r2)θ = (r1θ)(r2θ) = (I + r1)φ(I + r2)φ ,

so φ is a homomorphism, and hence an isomorphism, as required.
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Figure 2.1: A homomorphism

We illustrate this theorem with a picture.

In the picture, the parts into which R1 is divided are the cosets of the ideal

ker(θ) (the set Ker(θ) itself has been taken to be the top part of the partition).

The oval region inside R2 is the subring Im(θ). Each coset of Ker(θ) maps to a

single element of Im(θ).

The second Isomorphism Theorem is sometimes called the “Correspondence

Theorem”, since it says that subrings of R/I correspond in a one-to-one manner

with subrings of R containing I.

Theorem 2.18 (Second Isomorphism Theorem) Let I be an ideal of the ring R.
Then there is a one-to-one correspondence between the subrings of R/I and the
subrings of R containing I, given as follows: to a subring S of R containing I
corresponds the subring S/I of R/I. Under this correspondence, ideals of R/I
correspond to ideals of R containing I; and, if J is an ideal of R containing I, then

(R/I)/(J/I) ∼= R/J.

Proof If S is a subring of R containing I, then I is an ideal of S. (For applying

the ideal test inside S means we have to check that I is closed under subtraction

and under multiplication by elements of S; these are just some of the checks that

would be required to show that it is an ideal of R. Now if s ∈ S, then the entire

coset I + s lies in S, since S is closed under addition. So S/I is well-defined: it

consists of all the cosets of I which are contained in S. Clearly it is a subring of

R/I. Thus, we have a mapping from subrings of R containing I to subrings of R/I.

In the other direction, let T be a subring of R/I. This means that T is a set of

cosets of I which form a ring. Let S be the union of all the cosets in T . We will

show that S is a subring of R. It obviously contains I (since I is the zero coset) and

S/I = T follows.
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Take a,b ∈ S. Then I + a, I + b ∈ T . Since T is a subring, we have (I + a)−
(I +b) = I +(a−b) ∈ T and (I +a)(I +b) = I +ab ∈ T , so a−b ∈ S and ab ∈ S.

By the Second Subring Test, S is a subring.

Next we show that ideals correspond to ideals. Let J be an ideal of R con-

taining I. Then J/I is a subring of R/I, and we have to show that it is an ideal.

Take I + a ∈ J/I and I + r ∈ R/I. Then a ∈ J and r ∈ R, so ar,ra ∈ J, whence

(I + a)(I + r),(I + r)(I + a) ∈ J/I. Thus J/I is an ideal of R/I. The converse is

similar.

I will not give the proof that (R/I)/(J/I) ∼= R/J: this will not be used in the

course.

The Third Isomorphism Theorem needs a little more notation. Let A and B be

two subsets of a ring R. Then we define A+B to consist of all sums of an element

of A and an element of B:

A+B = {a+b : a ∈ A,b ∈ B}.
Theorem 2.19 (Third Isomorphism Theorem) Let R be a ring, S a subring of
R, and I an ideal of R. Then

(a) S + I is a subring of R containing I;

(b) S∩ I is an ideal of S;

(c) S/(S∩ I) ∼= (S + I)/I.

Proof We could prove the three parts in order, but it is actually easier to start

at the end! Remember the natural homomorphism θ from R to R/I with kernel

θ . What happens when we restrict θ to S, that is, we only put elements of S into

the function θ? Let φ denote this restriction. Then φ maps S to R/I. We find its

image and kernel, and apply the First Isomorphism Theorem to them.

(a) The image of φ consists of all cosets I + s containing a coset representative

in S. The union of all these cosets is I + S, so the image of φ is (I + S)/I.

This is a subring of R/I (since it is the image of a homomorphism). By the

Correspondence Theorem, S + I is a subring of R containing I.

(b) The kernel of φ consists of all elements of S mapped to zero by φ , that is,

all elements s ∈ S such that s ∈ Ker(θ) = I. Thus, Ker(φ) = S∩ I, and so

S∩ I is an ideal of S.

(c) Now the first isomorphism theorem shows that

S/(I +S) ∼= Im(φ) = (I +S)/I,

and we are done.
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2.4 Factorisation
One of the most important properties of the integers is that any number can be

factorised into prime factors in a unique way. But we have to be a bit careful. It

would be silly to try to factorise 0 or 1; and the factorisation is not quite unique,

since (−2) · (−3) = 2 ·3, for example. Once we have the definitions straight, we

will see that “unique factorisation” holds in a large class of rings.

2.4.1 Zero divisors and units
In this section, we will assume that our rings are always commutative.

Let R be a ring. We know that 0a = 0 holds for all a ∈ R. It is also possible

for the product of two non-zero elements of R to be zero. We say that a is a

zero-divisor if

• a �= 0, and

• there exists b ∈ R, with b �= 0, such that ab = 0.

In other words, if the product of two non-zero elements is zero, then we call each

of them a zero-divisor.

The ring Z has no zero-divisors, since if a and b are non-zero integers then

obviously ab �= 0. Also, a field has no zero divisors. For suppose that R is a field,

and let a be a zero-divisor. Thus, a �= 0, and there exists b �= 0 such that ab = 0.

Since R is a field, a has a multiplicative inverse a−1 satisfying a−1a = 1. Then

0 = a−10 = a−1(ab) = (a−1a)b = 1b = b,

contradicting our assumption that b �= 0.

In the next example, we use the greatest common divisor function for integers:

d is a greatest common divisor of a and b if it divides both of them, and if any

other divisor of a and b also divides d. That is, 6 is a greatest common divisor

of 12 and 18; but −6 is also a greatest common divisor. We will live with this

slight awkwardness for a while, choosing gcd(a,b) to be the positive rather than

the negative value.

Example Let R = Z/nZ, the ring of integers mod n. Then the element a ∈ R is

a zero-divisor if and only if 1 < gcd(a,n) < n.

Proof Suppose that a is a zero-divisor in R. This means that a �= 0 in R (that is,

a is not divisible by n, which shows that gcd(a,n) < n), and there exists b ∈ R
with b �= 0 and ab = 0. So, regarding a,b,n as integers, we have n | ab but n
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doesn’t divide either a or b. We are trying to prove that gcd(a,n) > 1, so suppose

(for a contradiction) that the greatest common divisor is 1. Since n and a are

coprime, the fact that n divides ab means that n must divide b, which contradicts

our assumption that b �= 0 in R.

Conversely, suppose that 1 < d = gcd(a,n) < n. Then a �= 0 as an element of

R. Let a = dx and n = db. Then n divides nx = (db)x = (dx)b = ab, but clearly

n doesn’t divide y. So, in the ring R, we have ab = 0 and b �= 0. Thus a is a

zero-divisor.

From now on we make another assumption about our rings: as well as being

commutative, they will always have an identity element. We make a definition:

An integral domain is a commutative ring with identity which has no zero-

divisors.

Example Z is an integral domain. (This example is the “prototype” of an inte-

gral domain, and gives us the name for this class of rings.) Any field is an integral

domain. The ring Z/nZ is an integral domain if and only if n is a prime number.

The last statement is true because a positive integer n has the property that

every smaller positive integer a satisfies gcd(a,n) = 1 if and only if n is prime.

Example If R is an integral domain, then so is the ring R[x] of polynomials over

R.

For suppose that f and g are non-zero polynomials, with degrees m and n
respectively: that is,

f (x) =
n

∑
i=0

aixi, g(x) =
m

∑
i=0

bixi,

where an �= 0 and bm �= 0. The coefficient of xm+n in f (x)g(x) is anbm �= 0 (because

R is an integral domain). So f (x)g(x) �= 0.

Let R be a ring with identity element 1; we assume that 1 �= 0, Let a ∈ R, with

a �= 0. An inverse of a is an element b ∈ R such that ab = ba = 1. We say that a us

a unit if it has an inverse. (We exclude zero because obviously 0 has no inverse:

0b = 0 for any element b.)

An element a has at most one inverse. For suppose that b and c are inverses of

a. Then

b = b1 = b(ac) = (ba)c = ac = c.

We write the inverse of the unit a as a−1. Furthermore, a zero-divisor cannot be a

unit. For, if ba = 1 and ac = 0, then

0 = b0 = b(ac) = (ba)c = 1c = c.
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Lemma 2.20 Let R be a ring with identity. Then

(a) 1 is a unit;

(b) if u is a unit then so is u−1;

(c) if u and v are units then so is uv.

Proof (a) 1 ·1 = 1.

(b) The equations uu−1 = u−1u = 1 show that the inverse of u−1 is u.

(c) Let u and v be units. We claim that the inverse of uv is v−1u−1. (Note the

reverse order!) For we have

(uv)(v−1u−1) = u(vv−1)u−1 = u1u−1 = uu−1 = 1,

(v−1u−1)(uv) = v−1(u−1u)v = v−11v = v−1v = 1.

To help you remember that you have to reverse the order when you find the

inverse of a product, this example may help. Suppose that u is the operation of

putting on your socks, and v the operation of putting on your shoes, so that uv
means “put on your socks and then your shoes”. What is the inverse of uv?

Example In the integral domain Z, the only units are +1 and −1. For if ab = 1,

then a = 1 or a = −1.

Example Consider the ring Z/nZ, where n > 1. We already saw that a is a

zero-divisor if and only if 1 < gcd(a,n) < n. We claim that a is a unit if and only

if gcd(a,n) = 1.

Suppose first that a is a unit, and that d = gcd(a,n). Then d | a and d | n. Let

b be the inverse of a, so that ab = 1 in R, which means that ab ≡ 1 (mod n), or

ab = xn+1. But then d divides ab and d divides xn, so d divides 1, whence d = 1.

To prove the converse, we use the Euclidean algorithm (more about this shortly),

which shows that, given any two integers a and n, there are integers x and y such

that xa + yn = d, where d = gcd(a,n). If d = 1, then this equation shows that

xa ≡ 1 (mod n), so that xa = 1 in Z/nZ, so that a is a unit.

This shows that every non-zero element of Z/nZ is either a zero-divisor or a

unit.

40 CHAPTER 2. RINGS

For example, for n = 12, we have:

1 unit 1 ·1 = 1

2 zero-divisor 2 ·6 = 0

3 zero-divisor 3 ·4 = 0

4 zero-divisor 4 ·3 = 0

5 unit 5 ·5 = 1

6 zero-divisor 6 ·2 = 0

7 unit 7 ·7 = 1

8 zero-divisor 8 ·3 = 0

9 zero-divisor 9 ·4 = 0

10 zero-divisor 10 ·6 = 0

11 unit 11 ·11 = 1

We call two elements a,b ∈ R associates if there is a unit u ∈ R such that

b = ua. Write a ∼ b to mean that a and b are associates. Thus, any unit is an

associate of 1, while 0 is associate only to itself.

Being associates is an equivalence relation: it is

• reflexive since a = a1 and 1 is a unit;

• symmetric since, if b = au, then a = bu−1, and u−1 is a unit;

• transitive since, if b = au and c = bv where u and v are units, then c = a(uv),
and uv is a unit.

Here we have invoked the three parts of the lemma above about units.

For example, in the ring Z/12Z, the associate classes are

{0}, {1,5,7,11}, {2,10}, {3,9} {4,8} {6}.

For example, the associate class containing 2 consists of 2, 2 · 5 = 10, 2 · 7 = 2,

and 2 ·11 = 10.

Now we can define greatest common divisors properly.

Let R be an integral domain. (Remember: this means that R is a commutative

ring with identity and has no divisors of zero.) We say that a divides b in R (written

as usual as a | b) if there exists x∈R with b = ax. Notice that every element divides

0, whereas 0 doesn’t divide anything else except 0. Also, 1 divides any element

of R, but the only elements which divide 1 are the units of R. [Check all these

claims!]

Proposition 2.21 In an integral domain R, two elements a and b are associates if
and only if a | b and b | a.
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Proof Suppose that a and b are associates. Then b = au for some unit u, so a | b.

Also a = bu−1, so b | a.

Conversely, suppose that a | b and b | a. If a = 0, then also b = 0 and a,b
are associates. So suppose that a �= 0. Then there are elements x and y such that

b = ax and a = by. We have axy = a, so a(1− xy) = 0. Since R is an integral

domain and a �= 0, we must have 1− xy = 0, or xy = 1. So x and y are units, and

a and b are associates.

Now we say that d is a greatest common divisor of a and b if

• d | a and d | b;

• if e is any element such that e | a and e | b, then e | b.

We abbreviate “greatest common divisor” to gcd.

Notice that, in general, “greatest” does not mean “largest” in any obvious way.

Both 6 and −6 are greatest common divisors of 12 and 18 in Z, for example.

Proposition 2.22 If d is a gcd of two elements a,b in an integral domain R, then
another element d′ is a gcd of a and b if and only if it is an associate of d.

Proof Suppose first that d and d′ are both gcds of a and b. Then d′ | d and d | d′
(using the second part of the definition), so that d and d′ are associates.

Conversely, suppose that d is a gcd of a and b (say a = dx and b = dy), and d′
an associate of d, say d′ = du for some unit u. Then

• a = d′u−1x and b = d′u−1y, so d′ | a and d′ | b;

• suppose that e | a and e | b. Then e | d, say d = ez; so we have d′ = eu−1z
and e | d′.

Thus d′ is a gcd of a and b.

Thus we can say: the greatest common divisor of a and b, if it exists, is “unique

up to associate”, that is, any two gcds are associates. We use the notation gcd(a,b)
to denote some (unspecified) greatest common divisor. In the integers, we can

make the convention that we choose the non-negative element of the associate

pair as the gcd.
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2.4.2 Unique factorisation domains
We are interested in the property of “unique factorisation” of integers, that is, any

integer other than 0,+1,−1 can be uniquely factorised into primes. Of course, the

factorisation is not quite unique, for two reasons:

(a) the multiplication is commutative, so we can change the order: 6 = 2 ·3 =
3 ·2.

(b) we will see that −2 and −3 also count as “primes”, and 6 = 2 · 3 = (−2) ·
(−3).

By convention, 1 is not a prime, since it divides everything. The same holds for

−1 (and only these two integers, since they are the only units in Z.) Accordingly,

we will specify that irreducible elements (the analogue of primes in a general

domain) should not be zero or units, and that we only try to factorise elements

which are not zero or a unit.

So we make the following definitions. Let R be an integral domain.

(a) An element p ∈ R is irreducible if p is not zero or a unit, but whenever

p = ab, then one of a and b is a unit (and the other therefore an associate of

p).

(b) R is a unique factorisation domain if it has the following properties:

• every element a ∈ R which is not zero or a unit can be written as a

product of irreducibles;

• if p1, . . . , pm,q1, . . . ,qn are irreducibles and

p1 p2 · · · pm = q1q2 · · ·qn,

then m = n and, after possibly permuting the factors in one product, pi
and qi are associates for i = 1, . . . ,m.

Note that, if an element p is irreducible, then so is every associate of p. If

the second condition in the definition of a unique factorisation holds, we say that

“factorisation is unique up to order and associates”. As we saw, this is the best we

can expect in terms of unique factorisation!

The ring Z is a unique factorisation domain; so is the ring F [x] of polynomials

over any field F . We will prove these things later on; we will see that it is the Eu-

clidean algorithm which is crucial to the proof, and the integers and polynomials

over a field both have a Euclidean algorithm.

Note that, to decide whether a ring is a unique factorisation domain, we have

first to check that it really is an integral domain, and second to find all the units

(so that we know when two elements are associates).
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Example Here is an example of a ring which is an integral domain but not a

unique factorisation domain. Let

R = {a+b
√−5 : a,b ∈ Z}.

We show first that R is a subring of C. Take two elements of R, say r = a+b
√−5

and s = c+d
√−5, with a,b,c,d ∈ Z. Then

r− s = (a− c)+(b−d)
√−5 ∈ R,

rs = (ac−5bd)+(ad +bc)
√−5 ∈ R,

since a− c,b−d,ac−5bc,ad +bc ∈ Z. So the Subring Test applies.

R is clearly an integral domain: there do not exist two nonzero complex num-

bers whose product is zero.

What are the units of R? To answer this, we use the fact that |a + b
√−5|2 =

a2 +5b2. Now suppose that a+b
√−5 is a unit, say

(a+b
√−5)(c+d

√−5) = 1.

Taking the modulus and squaring gives

(a2 +5b2)(c2 +5d2) = 1.

So a2 +5b2 = 1 (it can’t be −1 since it is positive). The only solution is a = ±1,

b = 0. So the only units are ±1, and so r is associate only to r and −r.

Now we show that 2 is irreducible. Suppose that

2 = (a+b
√−5)(c+d

√−5).

Taking the modulus squared again gives

4 = (a2 +5b2)(c2 +5d2).

So a2 + 5b2 = 1, 2 or 4. But the equation a2 + 5b2 = 2 has no solution, while

a2 + 5b2 = 1 implies a = ±1, b = 0, and a2 + 5b2 = 4 implies c2 + 5d2 = 1, so

that c = ±1, d = 0. So the only factorisations are

2 = 2 ·1 = 1 ·2 = (−2) · (−1) = (−2) · (−1) :

in each case, one factor is a unit and the other is an associate of 2.

In a similar way we can show that 3, 1+
√−5 and 1−√−5 are irreducible.

Now consider the factorisations

6 = 2 ·3 = (1+
√−5)(1−√−5).

These are two factorisations into irreducibles, which are not equivalent up to order

and associates. So R is not a unique factorisation domain!
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2.4.3 Principal ideal domains
Let R be a commutative ring with identity. We denote by aR, or by 〈a〉, the set

{ar : r ∈ R} of all elements divisible by a.

Lemma 2.23 〈a〉 is an ideal of R containing a, and if I is any ideal of R containing
a then 〈a〉 ⊆ I.

Proof We apply the Ideal Test. If ar1, ar2 ∈ 〈a〉, then

ar1 −ar2 = a(r1 − r2) ∈ 〈a〉.
Also, if ar ∈ 〈a〉 and x ∈ R, then

(ar)x = a(rx) ∈ 〈a〉.
So 〈I〉 is an ideal.

Since R has an identity element 1, we have a = a1 ∈ 〈a〉.
Finally, if I is any ideal containing a, then (by definition of an ideal) we have

ar ∈ I for any r ∈ R; that is, 〈a〉 ⊆ I.

Lemma 2.24 Let R be an integral domain. Then 〈a〉 = 〈b〉 if and only if a and b
are associates.

Proof 〈a〉 = 〈b〉 means, by definition, that each of a and b is a multiple of the

other, that is, they are associates.

We call 〈a〉 the ideal generated by a and say that it is a principal ideal.
More generally, if a1, . . . ,an ∈ R (where R is a commutative ring with identity,

then we let

〈a1, . . . ,an〉 = {r1a1 + · · ·+ rnan : r1, . . . ,rn ∈ R}.
Then it can be shown, just as above, that 〈a1, . . . ,an〉 is an ideal of R contain-

ing a1, . . . ,an, and that any ideal which contains these elements must contain

〈a1, . . . ,an〉. We call this the ideal generated by a1, . . . ,an.

A ring R is a principal ideal domain if every ideal is principal. We will see

later that Z is a principal ideal domain.

Proposition 2.25 Let R be a principal ideal domain. Then any two elements of R
have a greatest common divisor; in fact, d = gcd(a,b) if and only if 〈a,b〉 = 〈d〉.

Proof Suppose that R is a principal ideal domain. Then 〈a,b〉, the ideal generated

by a and b, is a principal ideal, so it is equal to 〈d〉, for some d ∈ R. Now we claim

that d = gcd(a,b).



2.4. FACTORISATION 45

• a ∈ 〈d〉, so d | a. Similarly d | b.

• Also, d ∈ 〈a,b〉, so d = ua + vb for some u,v ∈ R. Now suppose that e | a
and e | b, say a = ep and b = eq. Then d = ua + vb = e(up + vq), so that

e | d.

The claim is proved.

Since any two gcds of a and b are associates, and any two generators of 〈a,b〉
are associates, the result is proved.

Example The ring Z is a principal ideal domain. That means that the only ideals

in Z are the sets 〈n〉 = nZ, for n ∈ Z. We will deduce this from a more general

result in the next section.

Now it is the case that any principal ideal domain is a unique factorisation

domain. We will not prove all of this. The complete proof involves showing two

things: any element which is not zero or a unit can be factorised into irreducibles;

and any two factorisations of the same element differ only by order and associates.

We will prove the second of these two assertions. See the appendix to this chapter

for comments on the first.

Lemma 2.26 Let R be a principal ideal domain; let p be irreducible in R, and
a,b ∈ R. If p | ab, then p | a or p | b.

Proof Suppose that p | ab but that p does not divide a. Then we have gcd(a, p) =
1, and so there exist u,v ∈ R with 1 = ua+ vp. So b = uab+ vpb. But p | uab by

assumption, and obviously p | vpb; so p | b, as required.

This lemma clearly extends. If p is irreducible and divides a product a1a2 · · ·an,

then p must divide one of the factors. For either p | a1 or p | a2 · · ·an; in the latter

case, proceed by induction.

Theorem 2.27 Let R be a principal ideal domain, and suppose that

a = p1 p2 · · · pm = q1q2 · · ·qn,

where p1, . . . , pm,q1, . . . ,qn are irreducible. Then m = n and, after possibly per-
muting the factors, pi and qi are associates for i = 1, . . . ,m.

Proof Obviously p1 divides q1 · · ·qn, so p1 must divide one of the factors, say

p1 | qi. Since p1 and qi are irreducible, they must be associates. By permuting the

order of the qs and adjusting them by unit factors, we can assume that p1 = q1.

Then p2 · · · pm = q2 · · ·qn, and we proceed by induction.
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Example Here is an example of an integral domain which is not a principal ideal

domain. Consider the ring R = Z[x] of polynomials over the integers. Let I be the

set of all such polynomials whose constant term is even. Then I is an ideal in R: if

f and g are polynomials with even constant term, then so is f −g, and so is f h for

any polynomial h. But I is not a principal ideal. For I contains both the constant

polynomial 2 and the polynomial x of degree 1. If I = 〈a〉, then a must divide both

2 and x, so a = ±1. But ±1 /∈ I.

The polynomials 2 and x are both irreducible in R, and so their gcd is 1. But 1

cannot be written in the form 2u+ xv for any polynomials u and v.

The ring Z[x] is a unique factorisation domain (see the Appendix to this chap-

ter).

2.4.4 Euclidean domains
Any two integers have a greatest common divisor, and we can use the Euclidean

algorithm to find it. You may also have seen that the Euclidean algorithm works

for polynomials. We now give the algorithm in a very general form.

Let R be an integral domain. A Euclidean function on R is a function d from

the set R \ {0} (the set of non-zero elements of R) to the set N of non-negative

integers satisfying the two conditions

(a) for any a,b ∈ R with a,b �= 0, we have d(ab) ≥ d(a);

(b) for any a,b ∈ R with b �= 0, there exist q,r ∈ R such that

• a = bq+ r;

• either r = 0, or d(r) < d(b).

We say that an integral domain is a Euclidean domain if it has a Euclidean func-

tion.

Example Let R = Z, and let d(a) = |a| for any integer a.

Example Let R = F [x], the ring of polynomials over F , where F is a field. For

any non-zero polynomial f (x), let d( f (x)) be the degree of the polynomial f (x)
(the index of the largest non-zero coefficient).

Both of these examples are Euclidean functions.

(a) In the integers, we have d(ab) = |ab| = |a| · |b| ≥ |a| = d(a), since b �= 0.

In the polynomial ring F [x], we have

d(ab) = deg(ab) = deg(a)+deg(b) ≥ deg(a),
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since if the leading terms of a and b are anxn and bmxm respectively then the

leading term of ab is anbmxn+m.

(b) In each case this is the “division algorithm”: we can divide a by b to obtain a

quotient q and remainder r, where r is smaller than the divisor b as measured

by the appropriate function d.

You will have seen how to use the Euclidean algorithm to find the greatest

common divisor of two integers or two polynomials. The same method works in

any Euclidean domain. It goes like this. Suppose that R is a Euclidean domain,

with Euclidean function d. Let a and b be any two elements of R. If b = 0, then

gcd(a,b) = a. Otherwise, proceed as follows. Put a = a0 and b = a1. If ai−1 and

ai have been constructed, then

• if ai = 0 then gcd(a,b) = ai−1;

• otherwise, write ai−1 = aiq+r, with r = 0 or d(r) < d(ai), and set ai+1 = r;

repeat the procedure for ai and ai+1.

The algorithm terminates because, as long as ai �= 0, we have

d(ai) < d(ai−1) < · · · < d(a1).

Since the values of d are non-negative integers, this chain must stop after a finite

number of steps.

To see that the result is correct, note that, if a = bq+ r, then

gcd(a,b) = gcd(b,r)

(as an easy calculation shows: the common divisors of a and b are the same as the

common divisors of b and r. So we have gcd(ai−1,ai) = gcd(a,b) as long as ai is

defined. At the last step, ai = 0 and so gcd(a,b) = gcd(ai−1,0) = ai−1.

The algorithm can also be used to express gcd(a,b) in the form ua + vb for

some u,v ∈ R. For a and b themselves are both expressible in this form; and, if

ai−1 = ui−1a+ vi−1b and ai = uia+ vib, then with ai−1 = qai +ai+1, we have

ai+1 = ai−1 −qai = (ui−1 −qui)a+(vi−1 −qvi)b.

Example Find gcd(204,135). We have

204 = 135 ·1+69,

135 = 69 ·1+66,

69 = 66 ·1+3,

66 = 3 ·22,
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so gcd(204,135) = 3. To express 3 = 204u+135v, we have

69 = 204 ·1−135 ·1,

66 = 135−69 = 135 ·2−204 ·1,

3 = 69−66 = 204 ·2−135 ·3.

We will show that a Euclidean domain is a unique factorisation domain. First

we need one lemma. Note that, if a and b are associates, then b = au, so d(b) ≥
d(a), and also a = bu−1, so d(a) ≥ d(b); so we have d(a) = d(b).

Lemma 2.28 Let R be a Euclidean domain. Suppose that a and b are non-zero
elements of R such that a | b and d(a) = d(b). Then a and b are associates.

Proof Let a = bq + r for some q,r, as in the second part of the definition. Sup-

pose that r �= 0. Now b = ac for some element c; so a = acq + r. Thus, r =
a(1−cq), and since r �= 0 we have d(r)≥ d(a), contrary to assumption. So r = 0.

Then b | a; since we are given that a | b, it follows that a and b are associates.

Theorem 2.29 (a) A Euclidean domain is a principal ideal domain.

(b) A Euclidean domain is a unique factorisation domain.

Proof (a) Let R be a Euclidean domain, and let I be an ideal in R. If I = {0},

then certainly I = 〈0〉 and I is principal. So suppose that I is not {0}. Since the

values of d(x) for x ∈ I are non-negative integers, there must be a smallest value,

say d(a). We will claim that I = 〈a〉.
First, take b ∈ 〈a〉, say b = ax. Then b ∈ I, by definition of an ideal.

Next, take b ∈ I. Use the second part of the definition of a Euclidean function

to find elements q and r such that b = aq + r, with either r = 0 or d(r) < d(a).
Suppose that r �= 0. Then b ∈ I and aq ∈ I, so r = b = aq ∈ I; but d(r) < d(a)
contradicts the fact that d(a) was the smallest value of the function d on the non-

zero elements of I. So the supposition is impossible; that is, r = 0, and b = aq ∈
〈a〉.

So I = 〈a〉 is a principal ideal.

(b) Again let R be a Euclidean domain. We show that any nonzero non-unit

of R can be factorised into irreducibles. We showed in the last section that the

factorisation is unique (because R is a principal ideal domain)

Choose any element a ∈ R such that a �= 0 and a is not a unit. We have to

show that a can be factorised into irreducibles. The proof is by induction on d(a);
so we can assume that any element b with d(b) < d(a) has a factorisation into

irreducibles.
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If a is irreducible, then we have the required factorisation with just one term.

So suppose that a = bc where b and c are not units. If d(b) < d(a) and d(c) < d(a)
then, by induction, each of b and c has a factorisation into irreducibles; putting

these together we get a factorisation of a. So suppose that d(a) ≥ d(b). We also

have d(b) ≥ d(a), by the first property of a Euclidean function; so d(a) = d(b).
We also have b | a; by the Lemma before the Theorem, we conclude that a and b
are associates, so that c is a unit, contrary to assumption.

Corollary 2.30 (a) Z is a principal ideal domain and a unique factorisation
domain.

(b) For any field F, the ring F [x] of polynomials over F is a principal ideal
domain and a unique factorisation domain.

Proof This follows from the theorem since we have seen that these rings are

integral domains and have Euclidean functions, and so are Euclidean domains.

2.4.5 Appendix
More is true than we have proved above. You will meet these theorems in the

Algebraic Structures II course next term.

The connection between the three types of domain is:

Theorem 2.31

Euclidean domain ⇒ principal ideal domain ⇒ unique factorisation domain.

We proved most of this: we showed that a Euclidean domain is a principal

ideal domain, and that in a principal ideal domain factorisations are unique if they

exist. The proof that factorisations into irreducibles always exist in a principal

ideal domain is a little harder.

Neither implication reverses. We saw that Z[x] is not a principal ideal domain,

though it is a unique factorisation domain (see below). It is harder to construct a

ring which is a principal ideal domain but not a Euclidean domain, though such

rings do exist.

Another way to see the increasing strength of the conditions from right to left

is to look at greatest common divisors.

• In a unique factorisation domain, any two elements a and b have a greatest

common divisor d (which is unique up to associates).

• In a principal ideal domain, any two elements a and b have a greatest com-

mon divisor d (which is unique up to associates), and d can be written in

the form d = xa+ yb.
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• In a Euclidean domain, any two elements a and b have a greatest common

divisor d (which is unique up to associates), and d can be written in the form

d = xa + yb; moreover, the gcd, and the elements x and y, can be found by

the Euclidean algorithm.

You will also meet the theorem known as Gauss’s Lemma:

Theorem 2.32 If R is a unique factorisation domain, then so is R[x].

This result shows that Z[x] is a unique factorisation domain, as we claimed

above.

2.5 Fields
As you know from linear algebra, fields form a particularly important class of

rings, since in linear algebra the scalars are always taken to form a field.

Although the ring with a single element 0 would technically qualify as a field

according to our definition, we always rule out this case. Thus,

A field must have more than one element.

Another way of saying the same thing is that, in a field, we must have 1 �= 0. (If

there is any element x �= 0 in a ring with identity, then 1 · x = x �= 0 = 0 · x, and so

1 �= 0.)

The “standard” examples of fields are the rational, real and complex numbers,

and the integers mod p for a prime number p.

In this chapter, we will see how new fields can be constructed. The most im-

portant method of construction is adjoining a root of a polynomial. The standard

example of this is the construction of C by adjoining the square root of −1 (a

root of the polynomial x2 + 1 = 0) to R. We will also see that finite fields can be

constructed in this way.

Also we can build fields as fields of fractions; the standard example is the

construction of the rationals from the integers.

2.5.1 Maximal ideals
In this chapter, R always denotes a commutative ring with identity. As above, we

assume that the identity element 1 is different from the zero element 0: that is,

0 �= 1.

An ideal I of R is said to be proper if I �= R. An ideal I is maximal if I �= R and

there does not exist an ideal J with I ⊂ J ⊂ R; that is, any ideal J with I ⊆ J ⊆ R
must satisfy J = I or J = R.
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Lemma 2.33 Let R be a commutative ring with identity. Then R is a field if and
only if it has no ideals except {0} and R.

Proof If u ∈ R is a unit, then the only ideal containing u is the whole ring R. (For,

given any ideal I with u ∈ I, and any r ∈ R, we have r = u(u−1r) ∈ I, so I = R.) If

R is a field, then every non-zero element is a unit, and so any ideal other than {0}
is R.

Conversely, suppose that the only ideals are 0 and R. We have to prove that

multiplicative inverses exist (axiom (M3)). Take any element a ∈ R with a �= 0.

Then 〈a〉 = R, so 1 ∈ 〈a〉. This means that there exists b ∈ R with ab = 1, so

b = a−1 as required.

Proposition 2.34 Let F be a commutative ring with identity, and I a proper ideal
of R. Then R/I is a field if and only if I is a maximal ideal.

Proof By the Second Isomorphism Theorem, ideals of R/I correspond to ideals

of R containing I. Thus, I is a maximal ideal if and only if the only ideals of R/I
are zero and the whole ring, that is, R/I is a field (by the Lemma).

Proposition 2.35 Let R be a principal ideal domain, and I = 〈a〉 an ideal of R.
Then

(a) I = R if and only if a is a unit;

(b) I is a maximal ideal if and only if a is irreducible.

Proof (a) If a is a unit, then for any r ∈ R we have r = a(a−1r) ∈ 〈a〉, so 〈a〉= R.

Conversely, if 〈a〉 = R, then 1 = ab for some b ∈ R, and a is a unit.

(b) Since R is a PID, any ideal containing 〈a〉 has the form 〈b〉 for some b ∈ R.

Moreover, 〈a〉 ⊆ 〈b〉 if and only if b | a. So 〈a〉 is maximal if and only if, whenever

b | a, we have either b is a unit (so 〈b〉 = R) or b is an associate of a (so 〈b〉 = 〈a〉.

Corollary 2.36 Z/nZ is a field if and only if n is prime.

Proof Z is a principal ideal domain, and irreducibles are just the prime integers.

The field Z/pZ, for a prime number p, is often denoted by Fp.
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2.5.2 Adding the root of a polynomial
The other important class of principal ideal domains consists of the polynomial

rings over fields. For these, Propositions 2.34 and 2.35 give the first part of the

following result.

Proposition 2.37 Let F be a field and f (x) an irreducible polynomial over F.
Then K = F [x]/〈 f (x)〉 is a field. Moreover, there is an isomorphism from F to a
subfield of K; and, if α denotes the coset 〈 f (x)〉+ x, then we have the following,
where n is the degree of f (x), and we identify an element of F with its image under
the isomorphism:

(a) every element of k can be uniquely written in the form

c0 + c1α + c2α2 + · · ·+ cn−1αn−1;

(b) f (α) = 0.

Before proving this, we notice that this gives us a construction of the complex

numbers; Let F = R, and let f (x) = x2 +1 (this polynomial is irreducible over R).

Use the notation i instead of α for the coset 〈 f (x)〉+ x. Then we have n = 2, and

the two parts of the proposition tell us that

(a) every element of K can be written uniquely as a+bi, where a,b ∈ R;

(b) i2 = −1.

Thus, K = R[x]/〈x2 + 1〉 is the field C. The general theory tells us that this con-

struction of C does produce a field; it is not necessary to check all the axioms.

Proof (a) Let I denote the ideal 〈 f (x)〉. Remember that the elements of the

quotient ring F [x]/I are the cosets of I in F [x]. The isomorphism θ from F to

K = F [x]/I is given by

aθ = I +a for a ∈ F.

Clearly θ is one-to-one; for if aθ = bθ , then b−a ∈ I, but I consists of all mul-

tiples of the irreducible polynomial f (x), and cannot contain any constant poly-

nomial except 0, so a = b. It is routine to check that θ preserves addition and

multiplication. From now on, we identify a with the coset I + a, and regard F as

a subfield of F [x]/I.

Let g(x) ∈ F [x]. Then by the Euclidean algorithm we can write

g(x) = f (x)q(x)+ r(x),
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where r(x) = 0 or r(x) has degree less than n. Also, since g(x)− r(x) is a multiple

of f (x), it belongs to I, and so the cosets I +g(x) and I + r(x) are equal. In other

words, every coset of I in F [x] has a coset representative with degree less than n
(possibly zero). This coset representative is unique, since the difference between

any two coset representatives is a multiple of f (x).
Now let r(x) = c0 + c1x+ c2x2 + · · ·+ cn−1xn−1. We have

I + r(x) = I +(c0 + c1x+ c2x2 + · · ·+ cn−1xn−1)
= (I + c0)+(I + c1)(I + x)+(I + c2)(I + x)2 + · · ·+(I + cn−1)(I + x)n−1)
= c0 + c1α + c2α2 + · · ·+ cn−1αn−1.

Here, in the second line, we use the definition of addition and multiplication of

cosets, and in the third line we put I+x = α and use our identification of I+c = cθ
with c for c ∈ F .

So we have the required representation. Clearly it is unique.

(b) As before, if f (x) = a0 + a1x + · · ·+ anxn, we have I + f (x) = I (since

f (x) ∈ I), and so

0 = I +0

= I +(a0 +a1x+ · · ·+anxn)
= (I +a0)+(I +a1)(I + x)+ · · ·+(I +an)(I + x)n

= a0 +a1α + · · ·+anαn

= f (α).

2.5.3 Finite fields

Suppose that f (x) is an irreducible polynomial of degree n over the field Fp of

integers mod p. Then K = Fp[x]/〈 f (x)〉 is a field, by Proposition 2.37. According

to that proposition, its elements can be written uniquely in the form

c0 + c1α + · · ·+ cn−1αn−1

for c0, . . . ,cn−1 ∈Fp. There are p choices for each of the n coefficients c0,c1, . . . ,cn−1,

giving a total of pn elements altogether. Thus:

Proposition 2.38 Let f (x) be an irreducible polynomial of degree n over Fp.
Then K = Fp[x]/〈 f (x)〉 is a field containing pn elements.
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Example Let p = 2 and n = 2. The coefficients of a polynomial over F2 must

be 0 or 1, and so there are just four polynomials of degree 2, namely x2, x2 + 1,

x2 + x and x2 + x+1. We have

x2 = x · x, x2 + x = x · (x+1), x2 +1 = (x+1) · (x+1)

(remember that 1 + 1 = 0 in F2!), and so the only irreducible polynomial is x2 +
x+1. Thus, there is a field consisting of the four elements 0,1,α,1+α , in which

α2 + α + 1 = 0, that is, α2 = 1 + α (since −1 = +1 in F2!) The addition and

multiplication tables are easily found (with β = 1+α) to be

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1

β β α 1 0

· 0 1 α β
0 0 0 0 0

1 0 1 α β
α 0 α β 1

β 0 β 1 α

We have, for example,

α +β = α +1+α = 1,

αβ = α(1+α) = α +α2 = 1,

β 2 = (1+α)2 = 1+α = β .

The basic facts about finite fields were one

of the discoveries of Évariste Galois, the

French mathematician who was killed in a

duel in 1832 at the age of 19. Most of his

mathematical work, which is fundamental

for modern algebra, was not published until

fifteen years after his death, but the result on

finite fields was one of the few papers

published during his lifetime.

Galois proved the following theorem:

Theorem 2.39 The number of elements in a finite field is a power of a prime. For
any prime power pn, there is a field with pn elements, and any two finite fields
with the same number of elements are isomorphic.

We commemorate Galois by using the term Galois field for finite field. If

q = pn, then we often denote the field with q elements by GF(q). Thus the field

on the preceding page is GF(4). (Note that GF(4) is not the same as Z/4Z, the

integers mod 4, which is not a field!)
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2.5.4 Field of fractions
In this section we generalise the construction of the rational numbers from the

integers. [This section and the two following were not covered in the lectures, but

you are encouraged to read them for interest.]

Theorem 2.40 Let R be an integral domain. Then there is a field F such that

(a) R is a subring of F;

(b) every element of F has the form ab−1, for a,b ∈ R and b �= 0.

The field F is called the field of fractions of R, since every element of F can

be expressed as a fraction a/b.

We will build F as the set of all fractions of this form. But we have to answer

two questions?

• When are two fractions equal?

• How do we add and multiply fractions?

Thus, we start with the set X consisting of all ordered pairs (a,b), with a,b∈ R
and b �= 0. (That is, X = R× (R \ {0}).) The ordered pair (a,b) will “represent”

the fraction a/b. So at this point we have to answer the first question above:

when does a/b = c/d? Multiplying up by bd, we see that this holds if and only if

ad = bc. Thus, we define a relation ∼ on X by the rule

(a,b) ∼ (c,d) if and only if ad = bc.

We have to show that this is an equivalence relation.

reflexive: ab = ba, so (a,b) ∼ (a,b).

symmetric: If (a,b) ∼ (c,d), then ad = bc, so cb = da, whence (c,d) ∼ (a,b).

transitive: Suppose that (a,b) ∼ (c,d) and (c,d) ∼ (e, f ). Then ad = bc and

c f = de. So ad f = bc f = bde. This means that d(a f − be) = 0. But

d �= 0 and R is an integral domain, so we conclude that a f = be, so that

(a,b) ∼ (e, f ).

Now we let F be the set of equivalence classes of the relation ∼. We write the

equivalence class containing (a,b) as a/b. Thus we do indeed have that a/b = c/d
if and only if ad = bc.

Now we define addition and multiplication by the “usual rules”:
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• (a/b)+(c/d) = (ad +bc)/(bd);

• (a/b)(c/d) = (ac)/(bd).

(To see where these rules come from, just calculate these fractions in the usual

way!) Again, since b �= 0 and d �= 0, we have bd �= 0, so these operations make

sense. We still have to show that they are well-defined, that is, a different choice

of representatives would give the same result. For addition, this means that, if

(a,b)∼ (a′,b′) and (c,d)∼ (c′,d′), then (ad +bc,bd)∼ (a′d′+b′c′,b′d′). Trans-

lating, we have to show that

if ab′ = ba′ and cd′ = dc′, then (ad +bc)b′d′ = bd(a′d′ +b′c′),

a simple exercise. The proof for multiplication is similar.

Now we have some further work to do. We have to show that

• F , with addition and multiplication defined as above, is a field;

• the map θ defined by aθ = a/1 is a homomorphism from R to F , with kernel

{0} (so that R is isomorphic to the subring {a/1 : a ∈ R} of F).

These are fairly straightforward to prove, and their proof finishes the theorem.

2.5.5 Appendix: Simple rings

We saw at the start of this chapter (Lemma 2.33) that, if R is a commutative

ring with identity having no ideals except the trivial ones, then R is a field. You

might think that, if we simply leave out the word “commutative”, then we obtain a

characterisation of division rings. Unfortunately this is not so. The material here

is not part of the course; you can find a proof in the course textbook if you are

interested. Let R be a ring with identity. We say that R is a simple ring if the only

ideals in R are {0} and R. Then every division ring (and in particular every field)

is a simple ring, and our earlier argument shows that a commutative simple ring

is a field. But we have the following fact:

Theorem 2.41 Let R be a simple ring (with identity). Then the ring Mn(R) of
n×n matrices over R is a simple ring.

In particular, the ring of n×n matrices over a field F is a simple ring, although

it is not commutative and is not a division ring for n > 1.


