Chapitre 2

Point Estimation

2.1 Methods for constructing estimators

2.1.1 Method of Moments

The method of moments is a common approach for estimating the parame-
ters of a distribution by equating sample moments to population moments. Let
0 be the parameter we want to estimate.

Formula for the Method of Moments Estimator

The estimator 6 based on the method of moments is given by :

n
>_Xi
i=1

where X; are the observations from the sample.
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Example : Estimating the Parameter of an Expo-
nential Distribution

Suppose you have a random sample of size n from an exponential distribution
with an unknown rate parameter \. We want to estimate A using the method
of moments.

Step 1 : Moments of the Exponential Distribution

The exponential distribution has a single parameter, A\, which represents the
rate. The moment of a random variable X with an exponential distribution is
given by :

1
Wi = E for k=1,2,3,...
Step 2 : Sample Moments
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Calculate the sample moments based on your data. In this case, we are
interested in the first moment (the mean) and the second moment (the variance)
of the exponential distribution.

- First moment (mean) :

1
H1 = X
- Second moment (variance) :
2
Mo = F

Step 3 : Method of Moments Estimation

Equate the sample moments to their population counterparts and solve for
the unknown parameter, A :

- For the mean :

:}X:

> =

H1 =

el =

where X is the sample mean.
- For the variance :

Step 4 : Mathematical Proof
To prove the method of moments estimator for A, we’ll use the mean :
< 1
A==
X
To verify that this estimator is unbiased, we need to find ]E(;\) and show that
it equals the true value of A :

So, the method of moments estimator A= % is unbiased for the parameter
A. This means that, on average, it will give an estimate that equals the true
value of \.

Example : Estimating the Parameters of a Uni-
form Distribution

Suppose you have a random sample of size n from a continuous uniform
distribution on the interval [a,b], where a and b are unknown parameters. We
want to estimate a and b using the method of moments.

Step 1 : Moments of the Uniform Distribution

The continuous uniform distribution on the interval [a, b] has two parame-
ters : a and b. The moments of this distribution are as follows :
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- First moment (mean) :

_a+b
=
- Second moment (variance) :
_(b—a)?
M2 ="15

Step 2 : Sample Moments

Calculate the sample moments based on your data. In this case, we are
interested in estimating a and b, so we will use the first and second moments.

- For the mean :

_a+b
p1 = 5
- For the variance :
_(b—a)?
H2 = 12

Step 3 : Method of Moments Estimation

Equate the sample moments to their population counterparts and solve for
the unknown parameters, ¢ and b :

- For the mean :

a+b
M= = a+b=2u
- For the variance :
b—a)?
M2=%:>(b—a)2=12ﬂ2

Now, we have two equations with two unknowns (a and b). Solve this system
of equations to find the estimates of a and b.

Step 4 : Mathematical Proof

To verify the method of moments estimators for a and b, we need to show
that they are unbiased. Let’s consider the estimator for a :

a=2X—b

To prove that @ is unbiased, we need to find E(a) and show that it equals
the true value of a :

E(a) = E (2)‘( - B)

= 2E(X) — E(b)

Now, since X is the sample mean, E(X) = 22 = 4. Also, E(b) can be

calculated similarly. ’

After calculating E(a), you should find that it equals the true value of a.
Similarly, you can prove that the estimator for b is unbiased.

This demonstrates how to use the method of moments to estimate the pa-
rameters of a uniform distribution and provides a mathematical proof of the
unbiasedness of the estimators.
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2.1.2 Maximum Likelihood Estimation (MLE)

The maximum likelihood estimation method involves maximizing the likeli-
hood of the sample with respect to the parameter 6.

Likelihood Function

The likelihood function L(#) for a sample of size n is defined as the product
of the probability density (or mass) functions of the observations :

L(0) = f(X1;0) - f(X2;0) - ... f(Xn;0)

Maximum Likelihood Estimator (MLE)

The maximum likelihood estimator 6 MmLE 1s defined as :

Ovre = arg max L(9)

Example

Suppose we have a sample of size n from a normal distribution with mean
1 and variance o2. The likelihood function for this sample would be :

1 X1 — p)? 1 Xy — 1)? 1 X, — n)?
Ho®) = o (_( 1 ),Wexp (_( 1) )mxp (_<20u>>

The maximum likelihood estimator for u is simply the sample mean, fiy/g =
% Z?:l Xi, and for 0'2, it is 6’%/[LE = % Z?:](Xl — ﬂ]uLE‘)Q.

2.2 Characteristics of an estimator :
2.2.1 Bias, Mean squared error, Convergence
Bias

The bias of an estimator 6 is defined as the difference between the expected
value of 0 and the true parameter value 0 :

Bias(f) = E(0) — 0

Mean Squared Error (MSE)

The mean squared error (MSE) measures the average squared error of the
estimator with respect to the true parameter value :

MSE(A) = E((A — 6)?)



2.2. CHARACTERISTICS OF AN ESTIMATOR : 21

Convergence

The convergence of an estimator refers to its behavior as the sample size

increases. An estimator 6,, is said to converge to 6 if it approaches € as n
approaches infinity.

2.2.2 Fisher Information

The Fisher information quantity, denoted as I(6), measures the information
contained in the sample about the parameter 6. It is defined as :

16) = _E (821118];(2)(;9)>

where f(X;0) is the probability density (or mass) function of the probability
distribution.

2.2.3 Cramer-Rao Bound

The Cramer-Rao bound establishes a lower limit on the variance of any
unbiased estimator. For an unbiased estimator 6 of €, the Cramer-Rao bound is
given by :

1

Var() > 0

2.2.4 Efficiency

An estimator (91 is said to be more efficient than an estimator Aég if it ha§ a
smaller or equal variance for all possible values of 6. That is, Var(61) < Var(62)
for all 6.

2.2.5 Completeness

An estimator 6§ is said to be complete if it allows unbiased estimation of
all functions of . This is an important property in the context of Bayesian
estimation.

These concepts are fundamental for understanding the construction and eva-
luation of estimators in statistics. They play a crucial role in the selection and
interpretation of estimation methods.



