Deep learning

**Deep learning
Dr. Aissa Boulmerka
nerka@centre-univ-mila.dz** a.boulmerka@centre-univ-mila.dz

2023-2024

CHAPTER 2 SHALLOW NEURAL NETWORKS

What is a Neural Network?

Neural Network Representation Learning

\n1.
$$
x_1
$$

\n2. x_2

\n3. x_3

\n4. x_4

\n5. x_1

\n6. x_2

\n7. x_3

\n8. x_4

\n9. x_1

\n1. x_2

\n1. x_3

\n2. x_4

\n3. x_4

\n4. x_1

\n5. x_1

\n6. x_1

\n7. x_2

\n8. x_3

\n9. x_4

\n1. x_4

\n1. x_4

\n2. x_4

\n3. x_4

\n4. x_4

\n5. x_4

\n6. x_4

\n7. x_4

\n8. x_4

\n9. x_4

\n1. x_4

\n1. x_4

\n2. x_4

\n3. x_4

\n4. x_4

\n5. x_4

\n6. x_4

\n7. x_4

\n8. x_4

\n9. x_4

\n1. x_4

For loop across multiple examples (m)
$$
(x, y)
$$
, $x \in \{1^{(1)}, 1^{(1)}, 2^{(1)}, \ldots, 1^{(n)}\}$
\n x^{2}
\n x^{3}
\n x^{4}
\n x^{5}
\n x^{6}
\n x^{6}
\n x^{6}
\n x^{7}
\n x^{8}
\n x^{12}
\n x^{12}
\n x^{13}
\n x^{14}
\n x^{15}
\n x^{16}
\n x^{17}
\n x^{18}
\n x^{18}

Recap of vectorizing across multiple examples
\n
$$
\mathcal{L} = \begin{pmatrix}\nx_1 \\
x_2 \\
x_3\n\end{pmatrix}
$$
\n
$$
\mathcal{L} = \begin{pmatrix}\nx_1 \\
x_2 \\
x_3\n\end{pmatrix}
$$
\n
$$
\mathcal{L} = \begin{pmatrix}\n\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
$$

Activation functions

Pros and cons of activation functions

Derivatives of activation functions

Derivatives of activation functions

$$
g(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}
$$

 $z = 10 \implies tanh(z) \approx 1$ \Rightarrow g'(z) \approx 0

$$
z = -10 \implies g(z) \approx -1
$$

$$
\implies g'(z) \approx 0
$$

$$
z = 0 \Longrightarrow g(z) = 0
$$

$$
\Longrightarrow g'(z) = 1
$$

Derivatives of activation functions

Gradient descent for neural networks

Formulas for computing derivatives

Forward propagation:

 $\left[1\right] = W^{\left[1\right]}X + h^{\left[1\right]}$ $\left[4\right]$ $[1] = a^{[1]}(7^{[1]})$ $[2] = W^{[2]} A^{[1]} + h^{[2]}$ $|d b^{[2]}$ $\sigma^{[2]} = \sigma^{[2]}(7^{[2]}) = \sigma^{[7^{[2]})}$

Back propagation: $[2] = A^{[2]} - Y$ $[2] = \frac{1}{d} d7^{2} d^{1}T$ m^{12} ting derivatives

Back propagation:
 $\left\{\left(\begin{array}{cc} \zeta, \zeta \end{array}\right) = \frac{\Delta}{2} \left(\begin{array}{cc} \zeta \\ \zeta \end{array} - \zeta\right) \right\}$
 $\left[\begin{array}{cc} \zeta \end{array}\right]_{\{2\}}$
 $sum(dZ^{[2]}, axis = 1, keepingimes = True)$ $[2] = \frac{1}{2}$ nn sum $(d7^{2})$ axis = m^{10} $[2]$ axis = 1 kee **Back propagation:**
 $\begin{aligned}\n\mathcal{L}\left(\frac{1}{2}\right) &= \sum_{j=1}^{n} \mathcal{L}\left(\frac{1}{2}\right) \\
\mathcal{L}\left(\frac{1}{2}\right) &= \sum_{j=1}^{n} \mathcal{L}\left(\frac{1}{2}\right) \\
\mathcal{L}\left(\frac{1}{2}\right) &= \sum_{j=1}^{n} \mathcal{L}\left(\frac{1}{2}\right) \\
\mathcal{L}\left(\frac{1}{2}\right) &= \sum_{j=1}^{n} \mathcal{L}\left(\frac{1}{2}\right) \\
\mathcal{L$ $(n^{[1]},m)$ $(n^{[1]},m)$ $(n^{[1]},m)$ $\frac{dZ^{[2]}(q;q)}{dZ^{[2]}(q;q)} = \frac{1}{2}\left(\sqrt{3} - \sqrt{3}\right)$
 $\frac{dZ^{[2]}(q;q)}{dZ^{[2]}(q;q)}$
 $\frac{dZ^{[2]}(q;q)}{dZ^{[2]}(q;q;q)}$
 $\frac{dZ^{[2]}(q;q;q)}{dZ^{[2]}(q;q;q;q)}$
 $\frac{dZ^{[2]}(q;q;q)}{dZ^{[2]}(q;q;q;q)}$

Element wise product $[1] = \frac{1}{d} d7[1] X^T$ $m^{(1)}$ $\left[1\right]$ χ ^T $[1] = \frac{1}{2}$ m sum $(d7^{[1]}$ avis $=$ m^{10} $\begin{bmatrix} 1 \end{bmatrix}$ aris = 1 kee Element wise product $(n^{[1]}, 1)$ reshape 2 1 $\binom{n}{2}$

What happens if you initialize weights to zero?

- The bias terms b can be initialized by 0, but initializing W to all 0s is a problem:
	- The two activations $a_1^{[1]}$ and $a_2^{[1]}$ will be the same, because both of these hidden units are computing exactly the same function.
	- After every single iteration of training the two hidden units are still computing exactly the same function.

Random initialization

 $W^{[1]} = np.random.random((2,2)) * 0.01$ $b^{[1]} = np$. zeros $((2,1))$ $W^{[2]} = np.random.random((1,1)) * 0.01$ $b^{[1]} = 0$

Vectorization demo

References

- **Andrew Ng. Deep learning. Coursera.**
- Geoffrey Hinton. Neural Networks for Machine Learning.
- Kevin P. Murphy. Probabilistic Machine Learning An Introduction. MIT Press, 2022.