
1

COMPUTER ARCHITECTURE

2nd Year Computer science

Abdelhafid Boussouf University Center
2024-2025

MIPS R3000 Assembly Language

1

What is Assembly Language?
 Low-level programming language for a computer

 One-to-one correspondence with the machine instructions

 Assembly language is specific to a given processor

 Assembler: converts assembly program into machine code

 Assembly language uses:

 Mnemonics: to represent the names of low-level machine instructions

 Labels: to represent the names of variables or memory addresses

 Directives: to define data and constants

 Macros: to facilitate the inline expansion of text into other code
2

2

Assembly Language Statements
 Three types of statements in assembly language

 Typically, one statement should appear on a line

1. Executable Instructions

 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

 Translated by the assembler into real instructions

 Simplify the programmer task

3. Assembler Directives

 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set

3

Assembly Language Instructions
 Assembly language instructions have the format:

[label:] mnemonic [operands] [#comment]

 Label: (optional)

 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments

 Mnemonic

 Identifies the operation (e.g. add, sub, etc.)

 Operands

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $t0 4

3

Comments
 Single-line comment

 Begins with a hash symbol # and terminates at end of line

 Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

 Indicate input parameters and results of a procedure

 Describe what the procedure does 5

Program Template

main program entry

Exit program

.data

.text

li $v0, 10 syscall

Data section

Text section

6

4

.DATA & .TEXT Directives

 .DATA directive

 Defines the data segment of a program containing data

 The program's variables should be defined under this directive

 Assembler will allocate and initialize the storage of variables

 .TEXT directive

 Defines the code segment of a program containing instructions

7

Data Definition Statement
 The assembler uses directives to define data

 It allocates storage in the static data segment for a variable

 May optionally assign a name (label) to the data

 Syntax:

[name:] directive initializer [, initializer] . . .

var1: .WORD 10

 All initializers become binary data in memory
8

5

Data Directives
 .BYTE Directive

 Stores the list of values as 8-bit bytes

 .HALF Directive

 Stores the list as 16-bit values aligned on half-word boundary

 .WORD Directive

 Stores the list as 32-bit values aligned on a word boundary

 .FLOAT Directive

 Stores the listed values as single-precision floating point

 .DOUBLE Directive

 Stores the listed values as double-precision floating point 9

String Directives

 .ASCII Directive

 Allocates a sequence of bytes for an ASCII string

 .ASCIIZ Directive

 Same as .ASCII directive, but adds a NULL char at end of string

 Strings are null-terminated, as in the C programming language

 .SPACE Directive

 Allocates space of n uninitialized bytes in the data segment

10

6

Examples of Data Definitions
.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678:100

var4: .FLOAT 12.3, -0.1

var5: .DOUBLE 1.5e-10

str1: .ASCII "A String\n"

"NULL Terminated String" str2: .ASCIIZ

array: .SPACE 100

Array of 100 words

Initialized with the

same value

100 bytes (not initialized)
11

Instruction Categories

 Integer Arithmetic

 Arithmetic, logic, and shift instructions

 Data Transfer

 Load and store instructions that access memory

 Data movement and conversions

 Jump and Branch

 Flow-control instructions that alter the sequential sequence

12

7

LOAD /STORE Instructions

13

C
o

re

r1

r32

.

.

.

0

1

.

.

.

10

100

.

.

.

Address Data

lw $t0, 1($a0)

Memory[$a0 + 1] LOAD From the Memory

LOAD /STORE Instructions

14

8

LOAD /STORE Instructions

🞍 Memory reads are called loads

🞍 Mnemonic: load word (lw)

Example: read a word of data at memory address 1 into $s3

🞍 Memory address calculation:

 add the base address ($0) to the offset (1)

 address = ($0 + 1) = 1

 $s3 holds the value 0xF2F1AC07
after the instruction completes

🞍 Any register may be used to store the base address

 lw $s3, 1($0) # read memory word 1 into $s3

LOAD From the Memory

15

C
o

re

r1

r32

.

.

.

0

1

.

.

.

10

100

.

.

.

Address Data

sw $t0, 1($a0)

Memory[$a0 + 1]

LOAD /STORE Instructions

STORE into the memory

16

9

LOAD /STORE Instructions
STORE into the memory

• Memory writes are called stores

🞍 Mnemonic: store word (sw)

🞍 Example: Write (store) the value held in $t4 into memory address 7

🞍 Memory address calculation:

 add the base address ($0) to the offset (7)

 address = ($0 + 7) = 7

 Offset can be written in
decimal (default) or hexadecimal

🞍 Any register may be used to store
the base address

sw $t4, 0x7($0) # write the value

to memory word 7

17

LOAD /STORE Instructions
STORE into the memory

 Li - Load immediate -

Li Rdest, Imm
Exemple:

Li $t0, 23
• La - Load address-

 La Rdest, adress

 Copy of Register
Move Rdest, Rsrc

 # $t1 =42

18

10

Arithmetic instructions

 add, sub: arithmetic overflow causes an exception

 In case of overflow, result is not written to destination register

 addu, subu: arithmetic overflow is ignored

 addu, subu: compute the same result as add, sub

 Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

Instruction Meaning Op Rs Rt Rd sa func

add $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x20

addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x21

sub $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x22

subu $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x23

19

 add $0, $1, $2

add: operation, $0: Destination, $1 & $2: Source(s)

Most of the arithmetic/logical: two sources and one destination

Arithmetic instructions

20

11

Constants and Immediate

x=x+10

addi $s0, $s0, 10

i: immediate, for constants
constant: 16 bits.

No need of a register

Arithmetic instructions

21

 Consider the translation of: f = (g+h)–(i+j)

 Programmer / Compiler allocates registers to variables

 Given that: $t0=f, $t1=g, $t2=h, $t3=i, and $t4=j

 Called temporary registers: $t0=$8, $t1=$9, …

 Translation of: f = (g+h)–(i+j)

addu $t5, $t1, $t2

addu $t6, $t3, $t4

subu $t0, $t5, $t6

$t5 = g + h

$t6 = i + j

f = (g+h)–(i+j)

Arithmetic instructions

22

12

Shift Instructions

 Shifting is to move the 32 bits of a number left or right

 sll means shift left logical (insert zero from the right)

 srl means shift right logical (insert zero from the left)

 sra means shift right arithmetic (insert sign-bit)

 The 5-bit shift amount field is used by these instructions

shift-in 0 . . .
sll

shift-out

32-bit value

. . .
srl

shift-in 0 shift-out

. . .
sra

shift-in sign-bit shift-out

23

Logic Bitwise Instructions

Instruction Meaning Op Rs Rt Rd sa func

and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 $t3 $t1 0 0x24

or $t1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 $t3 $t1 0 0x25

xor $t1, $t2, $t3 $t1 = $t2 ^ $t3 0 $t2 $t3 $t1 0 0x26

nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 $t3 $t1 0 0x27

 Examples:

Given: $t1 = 0xabcd1234 and $t2 = 0xffff0000
and $t0, $t1, $t2 # $t0 = 0xabcd0000

or $t0, $t1, $t2 # $t0 = 0xffff1234

xor $t0, $t1, $t2 # $t0 = 0x54321234

nor $t0, $t1, $t2 # $t0 = 0x0000edcb

24

13

Branching

■ Allows a program to execute instructions out of sequence

■ Conditional branches

 branch if equal: beq

 branch if not equal: bne

■ Unconditional branches

 jump: j,b

 jump register: jr

 jump and link: jal

25

Conditional Branching

26

14

Conditional Branching (beq)

MIPS assembly
addi $s0, $0, 4
addi $s1, $0, 1
sll $s1, $s1, 2
beq $s0, $s1, target
addi $s1, $s1, 1
sub $s1, $s1, $s0

target:
add $s1, $s1, $s0

Labels indicate instruction locations in a program. They cannot use
reserved words and must be followed by a colon (:).

Blackboard

27

MIPS assembly
addi $s0, $0, 4 # $s0 = 0 + 4 = 4
addi $s1, $0, 1 # $s1 = 0 + 1 = 1
sll $s1, $s1, 2 # $s1 = 1 << 2 = 4
beq $s0, $s1, target # branch is taken
addi $s1, $s1, 1 # not executed
sub $s1, $s1, $s0 # not executed

target: add
 $s1,

$s1,

$s0

label
$s1 = 4 + 4 = 8

Labels indicate instruction locations in a program. They cannot use
reserved words and must be followed by a colon (:).

Conditional Branching (beq)

28

15

MIPS assembly
addi $s0, $0, 4 # $s0 = 0 + 4 = 4
addi $s1, $0, 1 # $s1 = 0 + 1 = 1
sll $s1, $s1, 2 # $s1 = 1 << 2 = 4
bne $s0, $s1, target # branch not taken
addi $s1, $s1, 1 # $s1 = 4 + 1 = 5
sub $s1, $s1, $s0 # $s1 = 5 – 4 = 1

target:
add $s1, $s1, $s0 # $s1 = 1 + 4 = 5

The Branch Not Taken (bne)

29

MIPS assembly
addi $s0, $0, 4 # $s0 = 4
addi $s1, $0,
j target

1 #

$s1 = 1
jump to target

sra $s1, $s1, 2 # not executed
addi $s1, $s1, 1 # not executed
sub $s1, $s1, $s0 # not executed

target:
add

$s1,

$s1,

$s0

$s1

= 1 + 4 = 5

Unconditional Branching / Jumping (j)

30

16

Unconditional Branching (jr)

MIPS assembly
0x00002000 addi $s0, $0, 0x2010 # load 0x2010 to $s0
0x00002004 jr $s0 # jump to $s0
0x00002008 addi $s1, $0, 1 # not executed
0x0000200C sra $s1, $s1, 2 # not executed
0x00002010 lw $s3, 44($s1) # program continues

31

High-Level Code Constructs

■ if statements

■ if/else statements

■ while loops

■ for loops

32

17

If Statement

if (i == j) f =
g + h;

f = f – i;

$s0 = f, $s1 = g, $s2 = h #
$s3 = i, $s4 = j

High-level code MIPS assembly code

33

If Statement

if (i == j) f =
g + h;

f = f – i;

$s0 = f, $s1 = g, $s2 = h #
$s3 = i, $s4 = j

bne $s3, $s4, L1
add $s0, $s1, $s2

L1: sub $s0, $s0, $s3

High-level code MIPS assembly code

■ Notice that the assembly tests for the opposite case (i != j)
than the test in the high-level code (i == j)

34

18

If / Else Statement

if (i == j) f =
g + h;

else
f = f – i;

$s0 = f, $s1 = g, $s2 = h #
$s3 = i, $s4 = j

High-level code MIPS assembly code

35

If / Else Statement

$s0 = f, $s1 = g, $s2 = h
$s3 = i, $s4 = j

if (i == j) bne $s3, $s4, L1
f = g + h; add $s0, $s1, $s2

else j done
f = f – i; L1:

done:
sub $s0, $s0, $s3

High-level code MIPS assembly code

36

19

While Loops

// determines the power
// of x such that 2x = 128
int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;

}

$s0 = pow, $s1 = x

High-level code MIPS assembly code

37

While Loops

// determines the power
// of x such that 2x = 128
int pow = 1;
int x = 0;

while (pow != 128) { pow
= pow * 2;
x = x + 1;

}

$s0 = pow, $s1 = x

addi $s0, $0, 1 add
 $s1, $0, $0 addi
$t0, $0, 128

while: beq $s0, $t0, done sll
 $s0, $s0, 1 addi
$s1, $s1, 1
j while

done:

High-level code MIPS assembly code

■ Notice that the assembly tests for the opposite case (pow
== 128) than the test in the high-level code (pow != 128)

38

20

For Loops

The general form of a for loop is:

for (initialization; condition; loop operation)

loop body

■ initialization: executes before the loop begins

■ condition: is tested at the beginning of each iteration

■ loop operation: executes at the end of each iteration

■ loop body: executes each time the condition is met
39

For Loops

// add the numbers from 0 to 9
int sum = 0;
int i;

for (i = 0; i != 10; i = i+1) { sum

= sum + i;
}

$s0 = i, $s1 = sum

High-level code MIPS assembly code

40

21

For Loops

// add the numbers from 0 to 9
int sum = 0;
int i;

for (i = 0; i != 10; i = i+1) { sum

= sum + i;
}

$s0 = i, $s1 = sum
addi $s1, $0, 0 add
 $s0, $0, $0
addi $t0, $0, 10

for: beq $s0, $t0, done add
 $s1, $s1, $s0 addi
$s0, $s0, 1
j for

done:

High-level code MIPS assembly code

■ Notice that the assembly tests for the opposite case (i ==
10) than the test in the high-level code (i != 10)

41

Less Than Comparisons

// add the powers of 2 from 1
// to 100 int
sum = 0; int i;

for (i = 1; i < 101; i = i*2) { sum

= sum + i;
}

$s0 = i, $s1 = sum

High-level code MIPS assembly code

42

22

Less Than Comparisons

// add the powers
// to 100

of 2 from 1 # $s0 = i, $s1 =
addi $s1,

sum
$0,

0
int sum = 0; addi $s0, $0, 1
int i; addi $t0, $0, 101

for (i = 1; i < 101; i = i*2) {
loop: slt

beq
$t1,
$t1,

$s0, $t0
$0, done

sum = sum
}

+ i;

done:

add
sll j

$s1,
$s0,
loop

$s1, $s0
$s0, 1

High-level code MIPS assembly code

■ $t1 = 1 if i < 101

43

Arrays

■ Useful for accessing large amounts of similar data

■ Array element: accessed by index

■ Array size: number of elements in the array

44

23

Arrays

■ 5-element array

■ Base address = 0x12348000
(address of the first array element, array[0])

■ First step in accessing an array:

 Load base address into a register

array[4]

array[3]

array[2]

array[1]

array[0]

0x12340010

0x1234800C

0x12348008

0x12348004

0x12348000

45

Arrays

// high-level code
int array[5];
array[0] = array[0] * 2;
array[1] = array[1] * 2;

MIPS assembly code
array base address = $s0

Initialize $s0 to 0x12348000

High-level code MIPS Assembly code

46

24

Arrays

// high-level code
int array[5];
array[0] = array[0] * 2;
array[1] = array[1] * 2;

MIPS assembly code
array base address = $s0

Initialize $s0 to 0x12348000
lui $s0, 0x1234 # upper $s0
ori $s0, $s0, 0x8000 # lower $s0

High-level code MIPS Assembly code

47

Arrays

// high-level code
int array[5];
array[0] = array[0] * 2;
array[1] = array[1] * 2;

MIPS assembly code
array base address = $s0

Initialize $s0 to 0x12348000 # upper $s0 lui $s0, 0x1234
ori $s0, $s0, 0x8000 # lower $s0

lw
sll
sw

$t1,
$t1,
$t1,

0($s0)
$t1, 1
0($s0)

$t1=array[0]
$t1=$t1*2
array[0]=$t1

lw $t1, 4($s0) # $t1=array[1]
sll $t1, $t1, 1 # $t1=$t1*2
sw $t1, 4($s0) # array[1]=$t1

High-level code MIPS Assembly code

48

25

Arrays Using For Loops

// high-level code int
arr[1000]; int i;

for (i = 0; i < 1000; i = i + 1)

arr[i] = arr[i] * 8;

$s0 = array base, $s1 = i
upper $s0 lui $s0, 0x23B8

ori $s0, $s0, 0xF000 # lower $s0

High-level code MIPS Assembly code

49

Arrays Using For Loops

// high-level code int
arr[1000]; int i;

for (i = 0; i < 1000; i = i + 1)

arr[i] = arr[i] * 8;

$s0 = array base, $s1 = i
upper $s0 lui $s0, 0x23B8

ori $s0, $s0, 0xF000 # lower $s0

addi $s1, $0, 0 # i = 0
addi $t2, $0, 1000 # $t2 = 1000

loop:
slt $t0, $s1, $t2 # i < 1000?
beq $t0, $0, done # if not done
sll $t0, $s1, 2 # $t0=i * 4
add $t0, $t0, $s0 # addr of arr[i]
lw $t1, 0($t0) # $t1=arr[i]
sll $t1, $t1, 3 # $t1=arr[i]*8
sw $t1, 0($t0) # arr[i] = $t1
addi
j

$s1,
loop

$s1, 1 #

i = i + 1
repeat

done:

High-level code MIPS Assembly code

50

26

Procedures

// High level code
void main()
{

int y;
y = sum(42, 7);
...

}

int sum(int a, int b)
{

return (a + b);
}

■ Definitions

 Caller: calling procedure (in this case, main)

 Callee: called procedure (in this case, sum)

51

Procedure Calling Conventions

■ Caller:

 passes arguments to callee

 jumps to the callee

■ Callee:

 performs the procedure

 returns the result to caller

 returns to the point of call

 must not overwrite registers or memory needed by the caller

52

27

MIPS Procedure Calling Conventions

■ Call procedure:

 jump and link (jal)

■ Return from procedure:

 jump register (jr)

■ Argument values:

 $a0 - $a3

■ Return value:

 $v0

53

Procedure Calls

int main() {
simple(); a =
b + c;

}

void simple() {
return;

}

0x00400200 main: jal simple
0x00400204 add $s0,$s1,$s2

...
0x00401020 simple: jr $ra

High-level code MIPS Assembly code

■ void means that simple doesn’t return a value

54

28

Procedure Calls

int main() {
simple(); a =
b + c;

}

void simple() {

return;
}

0x00400200 main: jal simple
0x00400204 add $s0,$s1,$s2

...
0x00401020 simple: jr $ra

High-level code MIPS Assembly code

■ jal: jumps to simple and saves PC+4 in the return
address register ($ra)

 In this case, $ra = 0x00400204 after jal executes

■ jr $ra: jumps to address in $ra

 in this case jump to address 0x00400204
55

Input Arguments and Return Values

■ MIPS conventions:

 Argument values: $a0 - $a3

 Return value: $v0

56

29

Input Arguments and Return Values

MIPS assembly code #
$s0 = y

main:
...

addi $a0, $0, 2
addi $a1, $0, 3
addi $a2, $0, 4
addi $a3, $0, 5

argument 0 = 2
argument 1 = 3
argument 2 = 4
argument 3 = 5 #
call procedure
y = returned value

jal diffofsums
add $s0, $v0, $0
...

$s0 = result
diffofsums:
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $0 jr
 $ra

$t0 = f + g #
$t1 = h + i
result = (f + g) - (h + i) #
put return value in $v0
return to caller

// High-level code
int main()
{
int y;
...
// 4 arguments
y = diffofsums(2, 3, 4, 5);
...

} int diffofsums(int f, int g,
int h, int i)

{
int result;
result = (f + g) - (h + i);
return result; // return value

}

57

Input Arguments and Return Values

$s0 = result
diffofsums:

add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
jr $ra # return to caller

■ diffofsums overwrote 3 registers: $t0, $t1, and $s0

■ diffofsums can use the stack to temporarily store registers
(comes next)

58

30

The Stack

■ Memory used to temporarily save
variables

■ Like a stack of dishes, last-in-first- out
(LIFO) queue

■ Expands: uses more memory when
more space is needed

■ Contracts: uses less memory when the
space is no longer needed

59

The Stack

■ Grows down (from higher to lower memory addresses)

■ Stack pointer: $sp, points to top of the stack

Data

7FFFFFFC

7FFFFFF8

7FFFFFF4

7FFFFFF0

12345678

Address

$sp 7FFFFFFC

7FFFFFF8

7FFFFFF4

7FFFFFF0

Address Data

12345678

AABBCCDD

11223344 $sp

60

31

How Procedures use the Stack

MIPS assembly # $s0 = result
diffofsums:

add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
jr $ra # return to caller

■ Called procedures must have no other unintended side
effects

■ But diffofsums overwrites 3 registers: $t0, $t1, $s0

61

Storing Register Values on the Stack

$s0 = result
diffofsums:

addi $sp, $sp, -12 # make space on stack
to store 3 registers

sw $s0, 8($sp) # save $s0 on stack
sw $t0, 4($sp) # save $t0 on stack
sw $t1, 0($sp) # save $t1 on stack
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
lw $t1, 0($sp) # restore $t1 from stack
lw $t0, 4($sp) # restore $t0 from stack
lw $s0, 8($sp) # restore $s0 from stack
addi $sp, $sp, 12 # deallocate stack space
jr $ra # return to caller

62

