Nom et prénom	Groupe	date	Note

TP N° 1 : Simulation de la fonction de transfert et la transformée de Laplace sous Matlab

I.1 Transformée de Laplace

Matlab permet de calculer les transformées de Laplace et les transformées inverses de Laplace	€.
Remarque : Matlab utilise (s) qui est la variable (p) de la TL.	

syms : définit les symboles "t" et "s".....

laplace : calcule la transformée de Laplace de l'expression donnée.

I.2 Transformée inverse de Laplace

ilaplace : calcule la transformée inverse de Laplace de l'expression donnée.

 $InvF=ilaplace(1/(s^2 + 1))$

Sur Command Window InvF=....

syms s

I.3 Fonction de transfert

La fonction *tf* permet la création des fonctions de transferts à partir du polynôme de son numérateur et le polynôme de son dénominateur.

H=tf (num, den);

num : c'est le polynôme numérateur.

den : c'est le polynôme dénominateur.

tf: définit une fonction de transfert

Soit les fonctions de transfert suivantes :

$$H1 = \frac{20}{p^2 + 2p + 4}$$
; $H2 = \frac{10p + 2}{3p^3 + 5p^2 + 2}$; $H3 = \frac{p + 2}{p^2 + 0.1p + 1}$

Exécuter:

$$H1 = tf([20], [1 2 4]);$$

 $H2 = tf([10 2], [3 5 0 2])$

 $H3 = tf([1\ 2], [1\ 0.1\ 1]);$

		Permis	ces	fonctions	de	transferts	H1,	H2	et F	H3 1	laquelle	e qu	i s'affiche	sur	Commar	nd W	indow	, dite
po	urqu	oi																
						• • • • • • • • • • • • •												
			•••••															
	>	Ecrire	les	fonctions	de	e transfer	ts F	I 1,	H2	et	Н3	sur	Command	•	Window	avec	une	autre
ma	anièr	e																
											• • • • • • •							

La fonction **zpk** permet la création des fonctions de transfert à partir de ces pôles, ces zéros et son gain, H= **zpk(num,den,gain)**. Soit les fonctions de transfert suivantes :

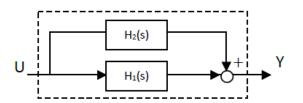
$$H4 = \frac{9}{(p-1)(p+5)}$$
; $H5 = \frac{25(p-2)(p+1)}{(p+3)(p+6)^2}$; $H6 = \frac{2(p-5)}{(p+2)(p-10)^2}$


Exécuter:

$$H4 = \mathbf{zpk}([\], [1-5], 9);$$

 $H5 = \mathbf{zpk}([2-1], [-3-6-6], 25);$
 $H6 = \mathbf{zpk}([5], [-2\ 10\ 10], 2)$

Þ	Pour calculer les pôles d'une fonction de transfert : pole (H1) ; pole (H2) ; pole (H3)
	Pour calculer les zéros d'une fonction de transfert : zero (H1) ; zero (H2) ; zero (H3)
	Pour donner les pôles ainsi que la pulsation propre et l'amortissement associés à chaque pôle : <i>damp</i> (H1)
	damp (H2)


I.4 Réduction des schémas fonctionnels

▶ H1(p) en série avec H2(p)
 G= series (H1, H2) ou G=H1*H2

➤ H1(p) en parallèle avec H2(p)

G= parallel (H1, H2) ou G=H1+H2

