
1

COMPUTER ARCHITECTURE

2nd Year Computer science

Abdelhafid Boussouf University Center
2024-2025

1

Chapiter1:

Introduction to computer architecture

2

What Is Computer Architecture?

 Computer architecture refers to the end-to-end
structure of a computer system that determines how
its components interact with each other in helping
to execute the machine’s purpose (i.e., processing
data).

2

3

What Is Computer Architecture?

 The science and art of designing, selecting, and

interconnecting hardware components and
designing the hardware/software interface to create
a computing system that meets functional,
performance, energy consumption, cost, and other
specific goals.

4

Von Neumann Architecture and Harvard Architecture

Examples of Computer Architecture: Von Neumann
Architecture (a) and Harvard Architecture (b)

3

5

Components of Computer Architecture

6

Types of Computer Architecture

4

7

What affects performance?

Hardware/Software Component How It Affects Performance

Algorithm Determines both the number of
source-level statements and the
number of I/O operations executed

Programming Language, Compiler, and
Architecture

Determines the number of
computer instructions for each
source-level statement

Processor and Memory System Determines how fast instructions
can be executed

I/O System (Hardware and Operating
System)

Determines how fast I/O operations
may be executed

1834–71: Analytical Engine
designed by Charles Babbage

Mechanical gears, where each
gear represented a discrete
value (0-9)

Programs provided as
punched cards

Never finished due to
technological restrictions

8

History: 0th Generation – Mechanical

5

1945–55: first machines
were created (Atanasoff–
Berry, Z3, Colossus, ENIAC)

All programming in pure
machine language

Connecting boards and
wires, punched cards
(later)

Stored program concept

 9

History: 1st Generation - Vacuum Tubes

Input

Output

Memory

Arithmetical /
Logic Unit

Control Unit

1955–65: era of mainframes
(e.g. IBM 7094) used in large
companies

Programming in assembly
language and FORTRAN

Batch systems (IO was
separated from calculations)

Punched cards and magnetic
tape

Loaders (OS ancestors)
10

History: 2nd Generation - Transistors

6

1965–1980: computer lines
using the same instruction set
architecture (e.g. IBM 360)

First operating systems (e.g.
OS/360, MULTICS)

Multiprogramming and
timesharing

Computer as utility
Programming languages and

compilers (LISP, BASIC, C)
11

History: 3rd Generation – Integrated Circuits

Job 3

Job 2

Job 1

Operating
System

Memory
Partitions

1980–Present: personal computers,
laptops, servers (Apple, IBM, etc.)

Architectures: x86-64, Itanium, ARM,
MIPS, PowerPC, SPARC, RISC-V, etc.

Operating systems: UNIX (System V
and BSD), MINIX, Linux, MacOS, DOS,
Windows (NT)

ISA (CISC, RISC, VLIW), caches,
pipelines, SIMD, vectors,
hyperthreading, multicore

12

History: 4th Generation – VLSI and PC

7

1990–Present: mobile devices,
embedded systems, IoT devices

Custom processors and FPGAs

Mobile operating systems:
Symbian, iOS, Android,
Windows Mobile

Real-time operating systems

13

History: 5th Generation – Mobile devices

14

Technology Trends

Electronics technology
continues to evolve
 Increased capacity and

performance
Reduced cost

Memory capacity

8

Gordon Moore (1929-...) cofounded Intel in 1968

with Robert Noyce

Moore’s Law: number of transistors on a computer

chip doubles every year (observed in 1965)

Limited by power consumption

Slowed down since 2010
15

Moore’s Law

16

Single Core Performance

Constrained by power, instruction-level parallelism, memory latency

Move to multicore

9

17

Power Trends

18

Memory Performance Gap

10

Single core performance improvement has ended
More powerful microprocessor might not help

Memory-efficient programming
Temporal locality
Spatial locality

Parallelism to improve performance
Data-level parallelism
Thread-level parallelism
Request-level parallelism

Performance tuning require changes in the application
19

Current Challenges

To create software that efficiently
deals with big data, we need to
understand how hardware is
organized and managed by
operating system

Computer architecture

Assembly language

Compiler basics

Operating systems
20

Concluding Remarks

Focus
of this
course

11

Each bit is 0 or 1
By encoding/interpreting sets of bits in various ways

 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

Why bits? Electronic implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

21

Everything is Bits

0.0V

0.2V

0.9V

1.1V

0 1 0

22

Number Systems

Decimal numbers

Binary numbers

5374
10

 = 5 × 103 + 3 × 102 + 7 × 101 + 4 × 100

five

thousands

1
0

's
 c

o
lu

m
n

1
0

0
's

 c
o

lu
m

n

1
0

0
0

's
 c

o
lu

m
n

three

hundreds

seven

tens

four

ones

1
's

 c
o

lu
m

n

1101
2
 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 13

10
one

eight

2
's

 c
o

lu
m

n

4
's

 c
o

lu
m

n

8
's

 c
o

lu
m

n

one

four

no

two

one

one

1
's

 c
o

lu
m

n

12

 20 = 1

 21 = 2

 22 = 4

 23 = 8

 24 = 16

 25 = 32

 26 = 64

 27 = 128

23

Powers of Two

 28 = 256

 29 = 512

 210 = 1024

 211 = 2048

 212 = 4096

 213 = 8192

 214 = 16384

 215 = 32768

 Decimal to binary conversion:
 Convert 100112 to decimal

 Decimal to binary conversion:
 Convert 4710 to binary

24

Number Conversion

13

N-digit decimal number
How many values? 10N
Range? [0, 10N - 1]
Example: 3-digit decimal number:

 103 = 1000 possible values
 Range: [0, 999]

N-bit binary number
How many values? 2N
Range: [0, 2N - 1]
Example: 3-digit binary number:

 23 = 8 possible values
 Range: [0, 7] = [0002 to 1112]

25

Binary Values and Range

Byte = 8 bits
Binary 000000002 to 111111112

Decimal: 010 to 25510

Hexadecimal 0016 to FF16
Base 16 number representation

Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

Write FA1D37B16 in C as
• 0xFA1D37B

• 0xfa1d37b

26

Encoding Byte Values

14

27

Bits, Bytes, Nibbles…

Bits

Bytes & Nibbles

Bytes

10010110
least

significant

bit

most

significant

bit

10010110
nibble

byte

CEBF9AD7
least

significant

byte

most

significant

byte

 Base 16

 Shorthand for
binary

28

Hexadecimal Numbers
Hex Digit Decimal Equivalent Binary Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

15

 Hexadecimal to binary conversion:
 Convert 4AF16 (also written 0x4AF) to binary

 Hexadecimal to decimal conversion:
 Convert 4AF16 to decimal

29

Hexadecimal to Binary Conversion

ASCII Code

30

16

Application software
Written in high-level language

System software
Compiler: translates high-level

language code to machine code
Operating System: service code

 Handling input/output

 Managing memory and storage

 Scheduling tasks & sharing resources

Hardware
CPU, memory, I/O controllers 31

Below Your Program

High-level language

 Level of abstraction closer
to problem domain

Provides productivity and portability

Assembly language

Textual representation
 of instructions

Hardware representation

Binary digits (bits)

Encoded instructions and data
32

Levels of Program Code

17

1. Primitive arithmetic and
logical operations

2. Complex data types and
data structures

3. Complex control
structures – conditional
statements, loops and
procedures

4. Not suitable for direct
implementation in
hardware 33

Assembly Programming

1. Primitive arithmetic and
logical operations

2. Primitive data structures
– bits and integers

3. Control transfer
instructions

4. Designed to be directly
implementable in
hardware

High Level Language vs Assembly Language

