

What Is Computer Architecture?

Computer architecture refers to the end-to-end structure of a computer system that determines how its components interact with each other in helping to execute the machine's purpose (i.e., processing data).

What Is Computer Architecture?

The science and art of designing, selecting, and interconnecting hardware components and designing the hardware/software interface to create a computing system that meets functional, performance, energy consumption, cost, and other specific goals.

3

What affects performance?			
Hardware/Software Component	How It Affects Performance		
Algorithm	Determines both the number of source-level statements and the number of I/O operations executed		
Programming Language, Compiler, and Architecture	Determines the number of computer instructions for each source-level statement		
Processor and Memory System	Determines how fast instructions can be executed		
I/O System (Hardware and Operating System)	Determines how fast I/O operations may be executed		

- 1834–71: Analytical Engine designed by Charles Babbage
- Mechanical gears, where each gear represented a discrete value (0-9)
- Programs provided as punched cards
- Never finished due to technological restrictions

History: 1st Generation - Vacuum Tubes

- 1945–55: first machines were created (Atanasoff– Berry, Z3, Colossus, ENIAC)
- All programming in pure machine language
- Connecting boards and wires, punched cards (later)
- Stored program concept

History: 2nd Generation - Transistors

- 1955–65: era of mainframes (e.g. IBM 7094) used in large companies
- Programming in assembly language and FORTRAN
- Batch systems (IO was separated from calculations)
- Punched cards and magnetic tape
- Loaders (OS ancestors)

History: 4th Generation – VLSI and PC 1980–Present: personal computers, laptops, servers (Apple, IBM, etc.) Architectures: x86-64, Itanium, ARM, MIPS, PowerPC, SPARC, RISC-V, etc. Operating systems: UNIX (System V and BSD), MINIX, Linux, MacOS, DOS, Windows (NT) ISA (CISC, RISC, VLIW), caches, pipelines, SIMD, vectors, hyperthreading, multicore

History: 5th Generation – Mobile devices

- 1990–Present: mobile devices, embedded systems, IoT devices
- Custom processors and FPGAs
- Mobile operating systems: Symbian, iOS, Android, Windows Mobile
- Real-time operating systems

Moore's Law

- Gordon Moore (1929-...) cofounded Intel in 1968
 - with Robert Noyce
- Moore's Law: number of transistors on a computer

chip doubles every year (observed in 1965)

- Limited by power consumption
- Slowed down since 2010

Current Challenges

Single core performance improvement has ended

- More powerful microprocessor might not help
- Memory-efficient programming
 - Temporal locality
 - Spatial locality
- Parallelism to improve performance
 - Data-level parallelism
 - Thread-level parallelism
 - Request-level parallelism

Performance tuning require changes in the application

- To create software that efficiently deals with big data, we need to understand how hardware is organized and managed by operating system
 - Computer architecture
 - Assembly language
 - Compiler basics
 - Operating systems

Number Conversion

- Decimal to binary conversion:
 - Convert 10011₂ to decimal
- Decimal to binary conversion:
 - Convert 47₁₀ to binary

Encoding Byte Values

- Byte = 8 bits
 - Binary 00000002 to 11111112
 - Decimal: 010 to 25510
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

26

Hexadecimal Numbers				
	Hex Digit	Decimal Equivalent	Binary Equivalent	1
Base 16	0	0	0000	
	1	1	0001	
Shorthand for	2	2	0010	
binary	3	3	0011	
Since y	4	4	0100	
	5	5	0101	
	6	6	0110	
	7	7	0111	
	8	8	1000	
	9	9	1001	
	Α	10	1010	
	В	11	1011	
	С	12	1100]
	D	13	1101]
	E	14	1110	
	F	15	1111	

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal

ASCII Code Dec HxOct Char Dec Hx Oct Html Dec Hx Oct Html Chr Dec Hx Oct Html Chr 0 000 NUL 20 040 Space 64 40 100 @ R 96 60 140 «#96; 0 (null) 32 (start of heading) (start of text) 21 041 ! 22 042 " 41 101 A 42 102 B 97 98 61 141 62 142 ∝#97; ∝#98; 1 2 001 SOH 33 65 в 2 002 STX 34 66 3 4 003 ETX 004 EOT (end of text) (end of transmission) 35 36 23 043 # 24 044 \$ 67 68 43 103 C 44 104 D 99 100 63 143 64 144 3 4 C 6#99; c d ∝#100; 100 64 144 «#100; 101 65 145 «#101; 102 66 146 «#102; 103 67 147 «#103; 104 68 150 «#104; 105 69 151 «#105; 5 5 005 EN0 (enquiry) (acknowledge) 37 25 045 6#37; 69 45 105 E Е 45 105 «#65, 46 106 «#70; 47 107 «#71; 48 110 «#72; 49 111 «#73; 67 6 7 006 ACK 38 26 046 ∉#38; 70 Ĝ 007 27 047 6#39; BEL (bell) 39 71 28 050 «#40; 29 051 «#41; 8 9 010 (backspace) 40 72 н BS 011 TAB 012 LF 013 VT (horizontal tab) 73 9 41 I 73 49 111 & #73; 74 4A 112 & #74; 75 4B 113 & #75; 76 4C 114 & #76; 77 4D 115 & #77; 78 4E 116 & #78; 79 4F 117 & #78; 2A 052 * 2B 053 + 106 6A 152 6B 153 j k 10 (NL line feed, new line) 42 (vertical tab) 11 в 43 12 13 014 FF 015 CR (NP form feed, new page) (carriage return) 44 45 2C 054 «#44; 2D 055 «#45; 108 6C 154 109 6D 155 ≪#108; ≪#109; D 110 6E 156 111 6F 157 112 70 160 113 71 161 14 E 016 S0 F 017 SI (shift out) (shift in) 46 2E 056 . 2F 057 / N G#110; n 47 o 15 10 020 DLE 11 021 DC1 (data link escape) (device control 1) (device control 2) (device control 3) 30 060 «#48; 31 061 «#49; 50 120 P 51 121 Q 16 48 80 Р G#112; p 49 **∉#113;** 17 81 12 022 DC2 13 023 DC3 50 51 32 062 2 33 063 3 52 122 R 53 123 S 114 115 72 162 73 163 18 82 R ¢#114; r 83 19 «#115; 14 024 DC4 15 025 NAK 52 53 34 064 4 35 065 5 84 54 124 «#84; 85 55 125 «#85; 116 117 74 164 75 165 20 (device control 4) т t 21 (negative acknowledge) U *∝#*117; 76 166 77 167 78 170 16 026 SYN 17 027 ETB (synchronous idle) (end of trans. block) 54 55 36 066 6 37 067 7 86 56 126 «#86; 87 57 127 «#87; v 118 119 22 6 G#118; 23 ы *∝#*119; 24 18 030 CAN (cancel) (end of medium) 56 57 38 070 4#56; 8 88 58 130 4#88; × 120 170 171 ⊊#120; 25 19 031 EM 39 071 9 9 89 59 131 Y 121 79 y 1A 032 SUB 3A 072 4#58; 90 5A 132 «#90; Z 7A 172 26 (substitute) 58 : 122 *⊾#*122; 3B 073 ; 3C 074 < 27 1B 033 ESC (escape) 59 91 5B 133 [123 7B 173 ∉#123; 134 \ 7C 174 | 28 1C 034 FS (file separator) 60 92 5C 124 (group separator) (record separator) 3D 075 = 3E 076 > 135] 136 ^ 29 1D 035 GS 61 -93 5D125 7D175 **∉#125;** 94 ~ 30 1E 036 RS 62 5E 126 7E 176 DEL 31 1F 037 US (unit separator) 63 3F 077 ? 95 5F 137 _ 127 7F 177

29

