
1

COMPUTER ARCHITECTURE

2nd Year Computer science

Abdelhafid Boussouf University Center
2024-2025

1

Chapiter1:

Introduction to computer architecture

2

What Is Computer Architecture?

 Computer architecture refers to the end-to-end
structure of a computer system that determines how
its components interact with each other in helping
to execute the machine’s purpose (i.e., processing
data).

2

3

What Is Computer Architecture?

 The science and art of designing, selecting, and

interconnecting hardware components and
designing the hardware/software interface to create
a computing system that meets functional,
performance, energy consumption, cost, and other
specific goals.

4

Von Neumann Architecture and Harvard Architecture

Examples of Computer Architecture: Von Neumann
Architecture (a) and Harvard Architecture (b)

3

5

Components of Computer Architecture

6

Types of Computer Architecture

4

7

What affects performance?

Hardware/Software Component How It Affects Performance

Algorithm Determines both the number of
source-level statements and the
number of I/O operations executed

Programming Language, Compiler, and
Architecture

Determines the number of
computer instructions for each
source-level statement

Processor and Memory System Determines how fast instructions
can be executed

I/O System (Hardware and Operating
System)

Determines how fast I/O operations
may be executed

1834–71: Analytical Engine
designed by Charles Babbage

Mechanical gears, where each
gear represented a discrete
value (0-9)

Programs provided as
punched cards

Never finished due to
technological restrictions

8

History: 0th Generation – Mechanical

5

1945–55: first machines
were created (Atanasoff–
Berry, Z3, Colossus, ENIAC)

All programming in pure
machine language

Connecting boards and
wires, punched cards
(later)

Stored program concept

 9

History: 1st Generation - Vacuum Tubes

Input

Output

Memory

Arithmetical /
Logic Unit

Control Unit

1955–65: era of mainframes
(e.g. IBM 7094) used in large
companies

Programming in assembly
language and FORTRAN

Batch systems (IO was
separated from calculations)

Punched cards and magnetic
tape

Loaders (OS ancestors)
10

History: 2nd Generation - Transistors

6

1965–1980: computer lines
using the same instruction set
architecture (e.g. IBM 360)

First operating systems (e.g.
OS/360, MULTICS)

Multiprogramming and
timesharing

Computer as utility
Programming languages and

compilers (LISP, BASIC, C)
11

History: 3rd Generation – Integrated Circuits

Job 3

Job 2

Job 1

Operating
System

Memory
Partitions

1980–Present: personal computers,
laptops, servers (Apple, IBM, etc.)

Architectures: x86-64, Itanium, ARM,
MIPS, PowerPC, SPARC, RISC-V, etc.

Operating systems: UNIX (System V
and BSD), MINIX, Linux, MacOS, DOS,
Windows (NT)

ISA (CISC, RISC, VLIW), caches,
pipelines, SIMD, vectors,
hyperthreading, multicore

12

History: 4th Generation – VLSI and PC

7

1990–Present: mobile devices,
embedded systems, IoT devices

Custom processors and FPGAs

Mobile operating systems:
Symbian, iOS, Android,
Windows Mobile

Real-time operating systems

13

History: 5th Generation – Mobile devices

14

Technology Trends

Electronics technology
continues to evolve
 Increased capacity and

performance
Reduced cost

Memory capacity

8

Gordon Moore (1929-...) cofounded Intel in 1968

with Robert Noyce

Moore’s Law: number of transistors on a computer

chip doubles every year (observed in 1965)

Limited by power consumption

Slowed down since 2010
15

Moore’s Law

16

Single Core Performance

Constrained by power, instruction-level parallelism, memory latency

Move to multicore

9

17

Power Trends

18

Memory Performance Gap

10

Single core performance improvement has ended
More powerful microprocessor might not help

Memory-efficient programming
Temporal locality
Spatial locality

Parallelism to improve performance
Data-level parallelism
Thread-level parallelism
Request-level parallelism

Performance tuning require changes in the application
19

Current Challenges

To create software that efficiently
deals with big data, we need to
understand how hardware is
organized and managed by
operating system

Computer architecture

Assembly language

Compiler basics

Operating systems
20

Concluding Remarks

Focus
of this
course

11

Each bit is 0 or 1
By encoding/interpreting sets of bits in various ways

 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

Why bits? Electronic implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

21

Everything is Bits

0.0V

0.2V

0.9V

1.1V

0 1 0

22

Number Systems

Decimal numbers

Binary numbers

5374
10

 = 5 × 103 + 3 × 102 + 7 × 101 + 4 × 100

five

thousands

1
0

's
 c

o
lu

m
n

1
0

0
's

 c
o

lu
m

n

1
0

0
0

's
 c

o
lu

m
n

three

hundreds

seven

tens

four

ones

1
's

 c
o

lu
m

n

1101
2
 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 13

10
one

eight

2
's

 c
o

lu
m

n

4
's

 c
o

lu
m

n

8
's

 c
o

lu
m

n

one

four

no

two

one

one

1
's

 c
o

lu
m

n

12

 20 = 1

 21 = 2

 22 = 4

 23 = 8

 24 = 16

 25 = 32

 26 = 64

 27 = 128

23

Powers of Two

 28 = 256

 29 = 512

 210 = 1024

 211 = 2048

 212 = 4096

 213 = 8192

 214 = 16384

 215 = 32768

 Decimal to binary conversion:
 Convert 100112 to decimal

 Decimal to binary conversion:
 Convert 4710 to binary

24

Number Conversion

13

N-digit decimal number
How many values? 10N
Range? [0, 10N - 1]
Example: 3-digit decimal number:

 103 = 1000 possible values
 Range: [0, 999]

N-bit binary number
How many values? 2N
Range: [0, 2N - 1]
Example: 3-digit binary number:

 23 = 8 possible values
 Range: [0, 7] = [0002 to 1112]

25

Binary Values and Range

Byte = 8 bits
Binary 000000002 to 111111112

Decimal: 010 to 25510

Hexadecimal 0016 to FF16
Base 16 number representation

Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

Write FA1D37B16 in C as
• 0xFA1D37B

• 0xfa1d37b

26

Encoding Byte Values

14

27

Bits, Bytes, Nibbles…

Bits

Bytes & Nibbles

Bytes

10010110
least

significant

bit

most

significant

bit

10010110
nibble

byte

CEBF9AD7
least

significant

byte

most

significant

byte

 Base 16

 Shorthand for
binary

28

Hexadecimal Numbers
Hex Digit Decimal Equivalent Binary Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

15

 Hexadecimal to binary conversion:
 Convert 4AF16 (also written 0x4AF) to binary

 Hexadecimal to decimal conversion:
 Convert 4AF16 to decimal

29

Hexadecimal to Binary Conversion

ASCII Code

30

16

Application software
Written in high-level language

System software
Compiler: translates high-level

language code to machine code
Operating System: service code

 Handling input/output

 Managing memory and storage

 Scheduling tasks & sharing resources

Hardware
CPU, memory, I/O controllers 31

Below Your Program

High-level language

 Level of abstraction closer
to problem domain

Provides productivity and portability

Assembly language

Textual representation
 of instructions

Hardware representation

Binary digits (bits)

Encoded instructions and data
32

Levels of Program Code

17

1. Primitive arithmetic and
logical operations

2. Complex data types and
data structures

3. Complex control
structures – conditional
statements, loops and
procedures

4. Not suitable for direct
implementation in
hardware 33

Assembly Programming

1. Primitive arithmetic and
logical operations

2. Primitive data structures
– bits and integers

3. Control transfer
instructions

4. Designed to be directly
implementable in
hardware

High Level Language vs Assembly Language

