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CHAPTER 1

THE STABILITY OF

ONE-DIMENSIONAL MAPS

Introduction

Difference equations have been increasingly used as mathematical models in many disciplines including

genetics, eipdemiology, ecology, physiology, neural networks, psychology, engineering, physics, chem-

istry and social sciences. Their amenability to computerization and their mathematical simplicity have

attracted researchers from a wide range of disciplines. As we will see in Section 1.2, difference equations

are generated by maps (functions). Section 1.3 illustrates how discretizing a differential equation would

yeild a difference equation. Discretization algorithms are part of a discipline called numerical analysis

which belong to both mathematics and computer science. As most differential equations are unsolvable,

one needs to resort to computers for help. However, computers understand only recursions or difference

equations; thus the need to discretize differential equations.

1.1 Maps vs. Difference Equations

Consider a map f : R→ Rwhere R is the set of real numbers. Then the (positive) orbit O (x0) of a point

x0 ∈ R is defined to be the set of points

O (x0) =
{
x0, f (x0) , f 2 (x0) , f 3 (x0) , . . .

}

3



1.1. MAPS VS. DIFFERENCE EQUATIONS

where f 2 = f ◦ f , f 3 = f ◦ f ◦ f , etc.

Since most maps that we deal with are noninvertible, positive orbits will be called orbits, unless

otherwise stated.

If we let x(n) := f n (x0), then we obtain the first-order difference equation

x(n + 1) = f (x(n)) (1.1)

with x(0) = x0.

In population biology, x(n) may represent a population size in generation n. Equation (1.1) models a

simple population system with seasonal breeding whose generations do not overlap (e.g., orchard pests

and temperate zone insects). It simply states that the size x(n + 1) of a population in generation n + 1 is

related to the size x(n) of the population in the preceding generation n by the function f .

In epidemiology, x(n) represents the fraction of the population infected at time n. In economics, x(n)

may be the price per unit in time n for a certain commodity. In the social sciences, x(n) may be the

number of bits of information that can be remembered after a period n.

Example 1.1.1 (The Logistic Map). Let x(n) be the size of a population of a certain species at time n. Let µ be

the rate of growth of the population from one generation to another. Then a mathematical model that describes the

size of the population take the form

x(n + 1) = µx(n), µ > 0 (1.2)

If the initial population x(0) = x0, then by a simple iteration we find that

x(n) = µnx0 (1.3)

is the solution of Equation (1.2).

If µ > 1, then the population x(n) increases without any bound to infinity. If µ = 1, x(n) = x0 and the

population stays constant forever. Finally, for µ < 1, limn→∞ x(n) = 0, and the population eventually becomes

extinct.

We observe that for most species none of the above scenarios are valid; the population increases until it reaches

a certain maximum value. Then limited resources would force members of the species to fight and compete for

those limited resources. This competition is proportional to the number of squabbles among them, given by x2(n).

Consequently, a more reasonable model is given by

x(n + 1) = µx(n) − bx2(n) (1.4)

where b > 0 is the proportionality constant of interaction among members of the species.
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1.2. MAPS VS. DIFFERENTIAL EQUATIONS

To simplify Equation (1.4), we let y(n) = b
µx(n). Hence,

y(n + 1) = µy(n)(1 − y(n)) (1.5)

Equation (1.5) is called the logistic equation and the map f (y) = µy(1 − y) is called the logistic map. It is a

reasonably good model for seasonably breeding populations in which generations do not overlap.

This equation/map will be the focus of our study throughout Chapter 1. By varying the value of µ, this

innocent-looking equation/map exhibits complicated dynamics.

Surprisingly, a closed form solution of Equation (1.5) is not possible, except for µ = 2, 4.

A map f is called linear if it is of the form f (x) = ax for some constant a. In this case, Equation (1.1) is called

a first-order linear difference equation. Otherwise, f [or Equation (1.1)] is called nonlinear (or density-dependent

in biology).

One of the main objectives in dynamical systems theory is the study of the behavior of the orbits of a given

map or a class of maps. In the language of difference equations, we are interested in investigating the behavior

of solutions of Equation (1.1). By a solution of Equation (1.1), we mean a sequence {ϕ(n)},n = 0, 1, 2, . . ., with

ϕ(n + 1) = f (ϕ(n)) and ϕ(0) = x0, i.e., a sequence that satisfies the equation.

1.2 Maps vs. Differential Equations

1.2.1 Euler’s Method

Consider the differential equation

x′(t) = 1(x(t)), x(0) = x0 (1.6)

where x′(t) =
dx
dt

.

For many differential equations such as Equation (1.6), it may not be possible to find a "closed form"

solution. In this case, we resort to numerical methods to approximate the solution of Equation (1.6). In

the Euler algorithm, for example, we start with a discrete set of points t0, t1, . . . , tn, . . ., with h = tn+1 − tn

as the step size. Then, for tn ≤ t < tn+1, we approximate x(t) by x (tn) and x′(t) by x(tn+1)−x(tn)
h . Equation

(1.6) now yields the difference equation

x (tn+1) = x (tn) + h1 (x (tn))

which may be written in the simpler form

x(n + 1) = x(n) + h1(x(n)) (1.7)

where x(n) = x (tn).
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1.2. MAPS VS. DIFFERENTIAL EQUATIONS

Note that Equation (1.7) is of the form of Equation (1.1) with

f (x) = f (x, h) = x + h1(x)

Now given the initial data x(0) = x0, we may use Equation (1.7) to generate the values x(1), x(2), x(3), . . .

These values approximate the solution of the differential Equation (1.6) at the "grid" points t1, t2, t3, . . .,

provided that h is sufficiently small.

Example 1.2.1 Let us now apply Euler’s method to the differential equation:

x′(t) = 0.7x2(t) + 0.7, x(0) = 1, t ∈ [0, 1]. (DE)1

n t
(∆E) Euler
(h = 0.2)

x(n)

(∆E) Euler
(h = 0.1)

x(n)

Exact (DE)
x(t)

0 0 1 1 1
1 0.1 1.14 1.150
2 0.2 1.28 1.301 1.328
3 0.3 1.489 1.542
4 0.4 1.649 1.715 1.807
5 0.5 1.991 2.150
6 0.6 2.170 2.338 2.614
7 0.7 2.791 3.286
8 0.8 2.969 3.406 4.361
9 0.9 4.288 6.383

10 1 4.343 5.645 11.681

Table 1.1

Comparison of exact and approximate numerical solutions for Example 1.2.

Using the separation of variable method, we obtain

1
0.7

∫
dx

x2 + 1
=

∫
dt
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1.2. MAPS VS. DIFFERENTIAL EQUATIONS

Hence

tan−1(x(t)) = 0.7t + c

Letting x(0) = 1, we get c =
π
4

. Thus, the exact solution of this equation is given by x(t) = tan
(
0.7t + π

4

)
.

The corresponding difference equation using Euler’s method is

x(n + 1) = x(n) + 0.7h
(
x2(n) + 1

)
, x(0) = 1. (∆E)2

Table 1.1 shows the Euler approximations for h = 0.2 and 0.1 , as well as the exact values. Figure 1.1 depicts

the n− x(n) diagram or the "time series." Notice that the smaller the step size we use, the better the approximation

we have.

Note that discretization schemes may be applied to nonlinear and higher order differential equations.

Example 1.2.2 (An Insect Population). Let us contemplate a population of aphids. These are plant lice, soft

bodied, pear shaped insects which are commonly found on nearly all indoor and outdoor plants, as well as vegetables,

field crops, and fruit trees.

Let

a(n) = number of adult females in the nth generation,

p(n) = number of progeny (offspring) in the nth generation,

m = fractional mortality in the young aphids,

q = number of progeny per female aphid,

r = ratio of female aphids to total adult aphids.

Since each female produces q progeny, it follows that

p(n + 1) = qa(n) (1.8)

Now of these p(n + 1) progeny, rp(n + 1) are female young aphids of which (1 − m)rp(n + 1) survives to

adulthood. Thus

a(n + 1) = r(1 −m)p(n + 1) (1.9)
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1.2. MAPS VS. DIFFERENTIAL EQUATIONS

(i)

(ii)

(iii)

FIGURE 1.2

(i) a(n) goes to extinction.

(ii) a(n) = a0, constant population.

(iii) a(n)→∞ as n→∞, exponential growth.
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1.2. MAPS VS. DIFFERENTIAL EQUATIONS

FIGURE 1.3 The Poincaré map is defined by P (xi) = xi+1.

Substituting from Equation (1.8) yields

a(n + 1) = rq(1 −m)a(n) (1.10)

Hence

a(n) = [rq(1 −m)]na(0) (1.11)

There are three cases to consider.

(i) If rq(1 −m) < 1, then lim
n→∞

a(n) = 0 and the population of aphids goes to extinction.

(ii) If rq(1 −m) = 1, then a(n) = a0, and we have a constant population size.

(iii) If rq(1 −m) > 1, then lim
n→∞

a(n) = ∞, and the population grows exponentially to∞.

1.2.2 Poincaré Map

One of the most interesting ways on which a differential equation leads to a map, called a Poincaré map,

is through the study of periodic solutions of a system of two differential equations

dx
dt

= f (x, y)

dy
dt

= 1(x, y)

which has a periodic orbit (closed curve) in the plane. Now choose a line L that intersects this periodic

orbit at a right angle. For any x0 on the line L, x1 = P (x0) is the point of intersection of the orbit starting

at x0 after it returns to the line L for the first time. Consequently, xi is the intersection point of the orbit
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1.3. LINEAR MAPS/DIFFERENCE EQUATIONS

starting at x0 after it returns to the line L for the i th time. This defines the Poincaré map associated with

our differential equation (Figure 1.3).

1.3 Linear Maps/Difference Equations

The simplest maps to deal with are the linear maps and the simplest difference equations to solve are

the linear ones. Consider the linear map

f (x) = ax

then

f n(x) = anx

In other words, the solution of the difference equation

x(n + 1) = ax(n), x(0) = x0 (1.12)

is given by

x(n) = anx0 (1.13)

We can make the following conclusions about the limiting behavior of the orbits of f or the solutions

of Equation (1.12):

1. If |a| < 1, then limn→∞

∣∣∣ f n (x0)
∣∣∣ = 0 (or limn→∞ |x(n)| = 0 ) [see Fig. 1.4 (b) and (c)].

2. If |a| > 1, then limn→∞

∣∣∣ f n (x0)
∣∣∣ = ∞ (or limn→∞ |x(n)| = ∞ ) if x0 , 0 [see Fig. 1.4 (a) and (d)].

3. (a) If a = 1, then f is the identity map where every point is a fixed point of f .

(b) If a = −1, then f n (x0) =


x0 if n is even

−x0 if n is odd
and the solution x(n) = (−1)nx0 of Equation (1.12) is

said to be periodic of period 2 .
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1.3. LINEAR MAPS/DIFFERENCE EQUATIONS

FIGURE 1.4 Time series [n − x(n)] graphs (a) a = 1.2, (b) a = 0.7, (c) a = −0.7, (d) a = −1.2. Solutions

of Eqs. (1.12) for different values of the parameter a.

Next, let us look at the affine map f (x) = ax + b. By successive iteration, we get

f 2(x) = a2x + ab + b

f 3(x) = a3x + a2b + ab + b

...

f n(x) = anx +

n−1∑
j=0

an− j−1b

In other words, the solution of the difference equation

x(n + 1) = ax(n) + b, x(0) = x0 (1.14)

is given by

x(n) = anx0 +

n−1∑
j=0

an− j−1b

= anx0 + b
(an
− 1

a − 1

)
, if a , 1 (1.15)

x(n) =

(
x0 +

b
a − 1

)
an +

b
1 − a

, if a , 1. (1.16)

Using the formula of Equation (1.16), the following conclusions can be easily verified:

1. If |a| < 1, then lim
n→∞

f n (x0) = b
1−a (or limn→∞ x(n) = b

1−a ).

2. If |a| > 1, then lim
n→∞

f n (x0) = ±∞, depending on whether x0 + b
a−1 is positive or negative, respectively.
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1.3. LINEAR MAPS/DIFFERENCE EQUATIONS

3. (a) If a = 1, then f n (x0) = x0 + nb, which tends to∞ or −∞ as n→∞ (or x(n) = xo + nb).

(b) If a = −1, then f n (x0) = (−1)nx0 +


b if n is odd

0 if n is even

Notice that the solution of the differential equation

dx
dt

= ax(t), x(0) = x0

is given by

x(t) = eatx0 (1.17)

Comparing (1.14) and (1.17) we see that the exponential eat in the differential equation corresponds

to an, the nth power of a, in the difference equation. The solution of the nonhomogeneous differential

equation

dx
dt

= ax(t) + b, x(0) = x0 (1.18)

is given by

x(t) = eatx0 +

∫ t

0
ea(t−s)bds

= eatx0 +
b
a

(
eat
− 1

)
=

(
x0 +

b
a

)
eat
−

b
a
. (1.19)

In cases 1, 2, 3, the behavior of the difference equation (1.15) depends on whether a is inside the

interval (−1, 1), on its boundary, or outside it. However for differential equations, the behavior of the

solution of Equation (1.18) depends on whether a < 0, a = 0, or a > 0, respectively. Consequently,

1. a < 0, lim
t→∞

x(t) = − b
a as eat

→ 0 as t→∞,

2. a = 0, x(t) = x0 since dx
dt = 0,

3. a > 0, lim
t→∞

x(t) = ∞ since eat
→∞ since t→∞.
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1.4. FIXED (EQUILIBRIUM) POINTS

Example 1.3.1 A drug is administered every six hours. Let D(n) be the amount of the drug in the blood system

at the nth interval. The body eliminates a certain fraction p of the drug during each time interval. If the amount

administered is D0, find D(n) and lim
n→∞

D(n).

SOLUTION The first step in solving this example is to write down a difference equation that relates

the amount of drug in the patient’s system D(n + 1) at the time interval (n + 1) with D(n). Now, the

amount of drug D(n+1) is equal to the amount D(n) minus the fraction p of D(n) that has been eliminated

from the body plus the new dose D0. This yields

D(n + 1) = (1 − p)D(n) + D0.

From Equations (1.14) and (1.15), we obtain

D(n) = (1 − p)nD0 + D0

(
1 − (1 − p)n

p

)
=

(
D0 −

D0

p

)
(1 − p)n +

Do

p
.

Thus,

lim
n→∞

D(n) =
Do

p
.

1.4 Fixed (Equilibrium) Points

In Section 1.4, we were able to obtain closed form solutions of first-order linear difference equations. In

other words, it was possible to write down an explicit formula for points f n (x0) in the orbit of a point x0

under the linear or

affine map f . However, the situation changes drastically when the map f is nonlinear. For example,

one cannot find a closed form solution for the simple difference equation (∆E) : x(n + 1) = µx(n)(1−x(n)),

except whenµ = 2 or 4 . For those of you who are familiar with first-order differential equations, this may

be rather shocking. We may solve the corresponding differential equation ( DE4 : x′(t) = λx(t)(1 − x(t))
)

by simply separating the variables x and t and then integrating both sides of the equation. The solution

of (DE) may be written in the form

x(t) =
x0eλt

1 + x0 (eλt − 1)
.

Note that the behavior of this solution is very simple: for λ > 0, lim
t→∞

x(t) = 1 and for λ < 0, lim
t→∞

x(t) = 0.

Unlike those of (DE), the behavior of solutions of (∆E) is extremely complicated and depends very much

on the values of the parameter µ. Since we cannot, in general, solve (∆E), it is important to develop

qualitative or graphical methods to determine the behavior of their orbits. Of particular importance

is finding orbits that consist of one point. Such points are called fixed points, or equilibrium points

13



1.4. FIXED (EQUILIBRIUM) POINTS

(steady states).

Let us consider again the difference equation

x(n + 1) = f (x(n)). (1.20)

Definition 1.4.1 A point x∗ is said to be a fixed point of the map f or an equilibrium point of Equation (1.20) if

f (x∗) = x∗.

Note that for an equilibrium point x∗, the orbit is a singleton and consists of only the point x∗. Moreover, to

find all equilibrium points of Equation (1.20), we must solve the equation f (x) = x. Graphically speaking, a fixed

point of a map f is a point where the curve y = f (x) intersects the diagonal line y = x. For example, the fixed

points of the cubic map f (x) = x3 can be obtained by solving the equation x3 = x or x3
− x = 0. Hence, there are

three fixed points -1, 0, 1 for this map (see Fig. 1.5).

Closely related to fixed points are the eventually fixed points. These are the points that reach a fixed point after

finitely many iterations. More explicitly, a point x is said to be an eventually fixed point of a map f if there exists

a positive integer r and a fixed point x∗ of f such that f r(x) = x∗, but f r−1(x) , x∗.

We denote the set of all fixed points by Fix ( f ), the set of all eventually fixed points by EFix ( f ), and the set of

all eventually fixed points of the fixed points x∗ by EFixx · ( f ).

FIGURE 1.5 The fixed points of f (x) = x3 are the intersection points with the diagonal line.

Given a fixed point x∗ of a map f , then one can easily construct eventually fixed points by computing the

ancestor set f−1 (x∗) =
{
x , x∗ : f (x) = x∗

}
, f−2 (x∗) =

{
x : f 2(x) = x∗

}
, . . . , f−n (x∗) =

{
x : f n(x) = x∗

}
, . . .. Thus

one may show that

EFix x∗ ( f ) =
{
x : f n(x) = x∗, n ∈ Z+} . (1.21)

Note that the set EFix( f )\ {x∗}may be empty, finite, or infinite as demonstrated by the following example.

Example 1.4.1 (i) Consider the logistic map f (x) = 2x(1− x). Then there are two fixed points x∗ = 0 and y∗ = 1
2 .

14



1.4. FIXED (EQUILIBRIUM) POINTS

A simple computation reveals that

f−1(x) =
1
2

[1 ±
√

1 − 2x].

Thus f−1
(

1
2

)
= 1

2 and EFixy∗ ( f )\
{

1
2

}
= ∅. Moreover, f−1(0) = {0, 1}, and EFixx ∗ ( f ) = {0, 1}. We conclude

that we have only one "genuine" eventually fixed point, namely x = 1.

(ii) Let us now contemplate a more interesting example, f (x) = 4x(1 − x). There are two fixed points, x∗ = 0,

and y∗ = 3
4 . Clearly EFixx∗ ( f ) = {0, 1}. Notice that f−1(x) = 1

2 [1 ±
√

1 − x]. Hence

f−1
(3

4

)
=

1
2

1 ±
√

1 −
3
4

 =
1
2

[
1 ±

1
2

]

which equals either 3
4 or 1

4 . Now f−1
(

1
4

)
= 1

2

[
1 ±

√
1 − 1

4

]
which equals either 1

2

[
1 +

√
3

2

]
or 1

2

[
1 −

√
3

2

]
. Repeating

this process we may generate an infinitely many eventually fixed point, that is the set EFixy∗ ( f ) is infinite. The

following diagram shows some of the eventually fixed points.

1→ 0

1
4
→

3
4(

1
2
−

√
3

4

)
→

1
4
→

3
4(

1
2

+

√
3

4

)
→

1
4
→

3
41

2
−

1
2

√
1
2

+

√
3

2

→
[

1
2
−

√
3

2

]
→

1
4
→

3
4

It is interesting to npte that the phenomenon of eventually fixed points does not have a counterpart in differential

equations, since no solution can reach an equilibrium point in a finite time.

Next we introduce one of the most interesting examples in discrete dynamical systems: the tent map T.

Example 1.4.2 (The Tent Map). The tent map T is defined as

T(x) =


2x, for 0 ≤ x ≤ 1

2

2(1 − x), for 1
2 < x ≤ 1.

This map may be written in the form

T(x) = 1 − 2
∣∣∣∣∣x − 1

2

∣∣∣∣∣ .
Note that the tent map is a piecewise linear map (see Fig. 1.6). The tent map possesses a rich dynamics and

in Chapter 3 we show it is in fact "chaotic." There are two equilibrium points x∗1 = 0 and x∗2 = 2
3 . Moreover, the

point 1
4 is an eventual equilibrium point since T

(
1
4

)
= 1

2 ,T
2
(

1
4

)
= T

(
1
2

)
= 1,T3

(
1
4

) 4
= T(1) = 0. It is left to you
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1.4. FIXED (EQUILIBRIUM) POINTS

to show that if x = k
2n , where k, and n are positive

FIGURE 1.6 The tent map has two fixed points x∗1 = 0 and x∗2 = 2
3 .

integers with 0 < k
2n ≤ 1, then x is an eventually fixed point (Problem 9). Numbers of this form are called

dyadic rationals.

Remark 1.4.1 Note that not every map has a fixed point. For example, the map f (x) = x + 1 has no fixed points

since the equation x + 1 = x has no solution.

Now, our mathematical curiosity would lead to the following question: under what conditions does

a map have a fixed point. Well, for continuous maps, there are two simple and interesting results that

guarantee the presence of fixed points.

Theorem 1.4.1 Let f : I → I be a continuous map, where I = [a, b] is a closed interval in R. Then, f has a fixed

point.

Proof. Define 1(x) = f (x) − x. Then, 1(x) is also a continuous map. If f (a) = a or f (b) = b, we are done.

So assume that f (a) , a and f (b) , b. Hence, f (a) > a and f (b) < b. Consequently, 1(a) > 0 and 1(b) < 0.

By the intermediate value theorem, there exists a point c ∈ (a, b) with 1(c) = 0. This implies that f (c) = c

and c is thus a fixed point of f .

The above theorem says that for a continuous map f if f (I) ⊂ I, then f has a fixed point in I. The next

theorem gives the same assertion if f (I) ⊃ I.

Theorem 1.4.2 Let f : I = [a, b]→ R be a continuous map such that f (I) ⊃ I. Then f has a fixed point in I.

Proof. The proof is left to the reader as Problem 10. Even if fixed points of a map do exist, it is sometimes

not possible to compute them algebraically. For example, to find the fixed points of the map f (x) = 2 sin x,

one needs to solve the transcendental equation 2 sin x − x = 0. Clearly x = 0 is a root of this equation

and thus a fixed point of the map f . However, the other two fixed points may be found by graphical or

numerical methods. They are approximately ±1.944795452.
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1.5 Graphical Iteration and Stability

One of the main objectives in the theory of dynamical systems is the study of the behavior of orbits

near fixed points, i.e., the behavior of solutions of a difference equation near equilibrium points. Such a

program of investigation is called stability theory, which henceforth will be our main focus. We begin

our exposition by introducing the basic notions of stability. LetZ+denote the set of nonnegative integers.

Definition 1.5.1 Let f : I → I be a map and x∗ be a fixed point of f , where I is an interval in the set of real

numbers R. Then

1. x∗ is said to be stable if for any ε > 0 there exists δ > 0 such that for all x0 ∈ I with |x0 − x∗| < δ we have∣∣∣ f n (x0) − x∗
∣∣∣ < ε for all n ∈ Z+. Otherwise, the fixed point x∗ will be called unstable (see Figs. 1.7 and 1.8).

2. x∗ is said to be attracting if there exists η > 0 such that |x0 − x∗| < η implies limn→∞ f n (x0) = x∗ (see Fig.

1.9).

3. x∗ is asymptotically stable if it is both stable and attracting (see Fig. 1.10). If in (2) η = ∞, then x∗ is

said to be globally asymptotically stable.

Henceforth, unless otherwise stated, ”stable” (asymptotically stable) always means ”locally stable” (asymptotically

stable).
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The Cobweb Diagram:

One of the most effective graphical iteration methods to determine the stability of fixed points is the

cobweb diagram. On the x − y plane, we draw the curve y = f (x) and the diagonal line y = x on the

same plot (see Fig. 1.11).

We start at an initial point x0. Then we move vertically until we hit the graph of f at the point(
x0, f (x0) ). We then travel horizontally to meet the line y = x at the point

(
f (x0) , f (x0)

)
. This de-

termines f (x0) on the x axis. To find f 2 (x0), we move again vertically until we strike the graph of

f at the point
(

f (x0) , f 2 (x0) ); and then we move horizontally to meet the line y = x at the point(
f 2 (x0) , f 2 (x0)

)
. Continuing this process, we can evaluate all of the points in the orbit of x0, namely, the

set
{
x0, f (x0) , f 2 (x0) , . . . , f n (x0) , . . .

}
(see Fig. 1.11).

Example 1.5.1 Use the cobweb diagram to find the fixed points for the quadratic map Qc(x) = x2 + c on the

interval [−2, 2], where c ∈ [−2, 0]. Then determine the stability of all fixed points.
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SOLUTION To find the fixed point of Qc, we solve the equation x2 + c = x or x2
− x + c = 0. This yields

the two fixed points x∗1 = 1
2 −

1
2

√
1 − 4c and x∗2 = 1

2 + 1
2

√
1 − 4c. Since we have not developed enough

machinery to treat the general case for arbitrary c, let us examine few values of c. We begin with c = −0.5

and an initial point x0 = 1.1. It is clear from Fig. 1.12 that the fixed point x∗1 = 1
2 −

√
3

2 ≈ −0.366 is

asymptotically stable, whereas the second fixed point x∗2 = 1
2 +

√
3

2 ≈ 1.366 is unstable.

Example 1.5.2 Consider again the tent map of Example 1.4.2. Find the fixed points and determine their stability.

SOLUTION The fixed points are obtained by putting 2x = x and 2(1− x) = x. From the first equation,

we obtain the first fixed point x∗1 = 0; and from the second equation, we obtain the second fixed point

x∗2 = 2
3 . Observe from the cobweb diagram (Fig. 1.13) that both fixed points are unstable.

Remark 1.5.1 If one uses the language of difference equations, then in the Cobweb diagrams, the x-axis is labeled

x(n) and the y-axis is labeled x(n + 1).

19



1.6. CRITERIA FOR STABILITY

1.6 Criteria for Stability

In this section, we will establish some simple but powerful criteria for local stability of fixed points.

Fixed (equilibrium) points may be divided into two types: hyperbolic and nonhyperbolic. A fixed

point x∗ of a map f is said to be hyperbolic if
∣∣∣ f ′ (x∗)∣∣∣ , 1. Otherwise, it is nonhyperbolic. We will treat

the stability of each type separately.

1.6.1 Hyperbolic Fixed Points

The following result is the main tool in detecting local stability.
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Theorem 1.6.1 Let x∗ be a hyperbolic fixed point of a map f , where f is continuously differentiable at x∗. The

following statements then hold true:

1. If
∣∣∣ f ′ (x∗)∣∣∣ < 1, then x∗ is asymptotically stable.

2. If
∣∣∣ f ′ (x∗)∣∣∣ > 1, then x∗ is unstable.

Proof. Suppose that
∣∣∣ f ′ (x∗)∣∣∣ < M < 1 for some M > 0. Then, there is an open interval I = (x∗ − ε, x∗ + ε)

such that
∣∣∣ f ′(x)

∣∣∣ ≤M < 1 for

all x ∈ I (Why? Problem 10). By the mean value theorem, for any x0 ∈ I, there exists c between x0 and x∗

such that ∣∣∣ f (x0) − x∗
∣∣∣ =

∣∣∣ f (x0) − f (x∗)
∣∣∣ =

∣∣∣ f ′(c)
∣∣∣ |x0 − x∗| ≤M |x0 − x∗| . (1.22)

Since M < 1, inequality (1.22) shows that f (x0) is closer to x∗ than x0. Consequently, f (x0) ∈ I.

Repeating the above argument on f (x0) instead of x0, we can show that

∣∣∣ f 2 (x0) − x∗
∣∣∣ ≤M

∣∣∣ f (x0) − x∗
∣∣∣ ≤M2

|x0 − x∗| . (1.23)

By mathematical induction, we can show that for all n ∈ Z+,

∣∣∣ f n (x0) − x∗
∣∣∣ ≤Mn

|x0 − x∗| . (1.24)

To prove the stability of x∗, for any ε > 0, we let δ = min(ε, ε̃). Then, |x0 − x∗| < δ implies that
∣∣∣ f n (x0) − x∗

∣∣∣ ≤
Mn
|x0 − x∗| < ε, which establishes stability. Furthermore, from Inequality (1.24) lim

n→∞

∣∣∣ f n (x0) − x∗
∣∣∣ = 0 and

thus lim
n→∞

f n (x0) = x∗, which yields asymptotic stability. The proof of part 2 is left to you as Problem 14 .

The following examples illustrate the applicability of the above theorem.

Example 1.6.1 Consider the map Gλ(x) = 1−λx2 defined on the interval [−1, 1], where λ ∈ (0, 2]. Find the fixed

points of Gλ(x) and determine their stability.

SOLUTION To find the fixed points of Gλ(x) we solve the equation 1− λx2 = x or λx2 + x− 1 = 0. There

are two fixed points:

x∗1 =
−1 −

√
1 + 4λ

2λ
and x∗2 =

−1 +
√

1 + 4λ
2λ

.

Observe that G′λ(x) = −2λx. Thus,
∣∣∣∣G′λ (

x∗1
)∣∣∣∣ = 1+

√
1 + 4λ > 1, and hence, x∗1 is unstable for allλ ∈ (0, 2 .

Furthermore,
∣∣∣∣G′λ (

x∗2
)∣∣∣∣ =

√
1 + 4λ − 1 < 1 if and only if

√
1 + 4λ < 2. Solving the latter inequality for λ,

we obtain λ < 3
4 . This implies by Theorem 1.3 that the fixed point x∗2 is asymptotically stable if 0 < λ < 3

4

and unstable if λ > 3
4 (see Fig. 1.15). When λ = 3

4 ,G
′

λ

(
x∗2

)
= −1.
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Example 1.6.2 (Raphson-Newton’s Method). Raphson-Newton’s method is one of the simplest and oldest

numerical methods for finding the roots of the equation 1(x) = 0. The Newton algorithm for finding a zero r of

1(x) is given by the difference equation

x(n + 1) = x(n) −
1(x(n))
1′(x(n))

(1.25)

where x(0) = x0 is our initial guess of the root r. Equation (1.25) is of the form of Equation (1.20) with

fN(x) = x −
1(x)
1′(x)

(1.26)

where fN is called Newton’s function.

Theorem 1.6.2 (Taylor’s Theorem)

Let f be differentiable of all orders at x0. Then

f (x) = f (x0) + (x − x0) f ′ (x0) +
(x − x0)2

2!
f ′′ (x0) + . . .

for all x in a small open interval containing x0.

Formula (1.25) may be justified using Taylor’s Theorem. A linear approximation of f (x) is given by the equation

of the tangent line to f (x) at x0 :

f (x) = f (x0) + (x − x0) f ′ (x0)

. The intersection of this tangent line with the x-axis produces the next point x1 in Newton’s algorithm (Fig. 1.16).

Letting f (x) = 0 and x = x1 yields

x1 = x0 −
f (x0)
f ′x0

)
By repeating the process, replacing x0 by x1, x1 by x2, . . ., we obtain formula (1.25).
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We observe first that if r is a root of 1(x), i.e., 1(r) = 0, then from Equation (1.26) we have fN(r) = r and thus r

is a fixed point of fN (assuming that 1′(r) , 0
)
. On the other hand, if x∗ is a fixed point of fN, then from Equation

(1.26) again we get 1(x
∗)

1′(x) = 0. This implies that 1 (x∗) = 0, i.e., x∗ is a zero of 1(x). Now, starting with a point x0

close to a root r of 1(x) = 0, then Algorithm (1.25) gives the next approximation x(1) of the root r. By applying the

algorithm repeatedly, we obtain the sequence of approximations

x0 = x(0), x(1), x(2), . . . , x(n), . . .

(see Fig. 1.16). The question is whether or not this sequence converges to the root r. In other words, we need

to check the asymptotic stability of the fixed point x∗ = r of fN. To do so, we evaluate f ′N(r) and then use Theorem

1.6.1,

∣∣∣ f ′N(r)
∣∣∣ =

∣∣∣∣∣∣1 −
[
1′(r)

]2
− 1(r)1′′(r)[
1′(r)

]2

∣∣∣∣∣∣ = 0, since 1(r) = 0

Hence, by Theorem 1.6.1, lim
n→∞

x(n) = r, provided that x0 is sufficiently close to r.

For 1(x) = x2
−1, we have two zero’s−1, 1. In this case, Newton’s function is given by fN(x) = x− x2

−1
2x = x2+1

2x .

The cobweb diagram of fN shows that Newton’s algorithm converges quickly to both roots (see Fig. 1.17).

1.6.2 Nonhyperbolic Fixed Points

The stability criteria for nonhyperbolic fixed points are more involved. They will be summarized in the

next two results, the first of which treats the case when f ′ (x∗) = 1 and the second for f ′ (x∗) = −1.

Theorem 1.6.3 Let x∗ be a fixed point of a map f such that f ′ (x∗) = 1. If f ′(x), f ′′(x), and f ′′′(x) are continuous

at x∗, then the following statements hold:

1. If f ′′ (x∗) , 0, then x∗ is unstable (semistable).

2. If f ′′ (x∗) = 0 and f ′′′ (x∗) > 0, then x∗ is unstable.

3. If f ′′ (x∗) = 0 and f ′′′ (x∗) < 0, then x∗ is asymptotically stable.

23



1.6. CRITERIA FOR STABILITY

Proof. Assume that f ′ (x∗) = 1 and f ′′ (x∗) , 0. Then, the curve y = f (x) is either concave upward(
f ′′ (x∗) > 0

)
or concave downward

(
f ′′ (x∗) < 0 ), as shown in Fig. 1.18(a) and (b). Now, if f ′′ (x∗) > 0,

then f ′(x) is increasing in a small interval containing x∗. Hence, f ′(x) > 1 for all x ∈ (x∗, x∗ + δ), for some

small δ > 0 [see Fig. 1.18(a)]. Using the same proof as in Theorem 1.3, we conclude that x∗ is unstable.

Similarly, if f ′′ (x∗) < 0 then f ′(x) is decreasing in a small neighborhood of x∗. Therefore, f ′(x) > 1 for all

x ∈ (x∗ − δ, x∗), for some small δ > 0, and again we conclude that x∗ is unstable [see Fig. 1.18(b)].

Example 1.6.3 Let f (x) = −x3 + x. Then x∗ = 0 is the only fixed point of f . Note that f ′(0) = 1, f ′′(0) =

0, f ′′′(0) < 0. Hence by Theorem 1.5, 0 is asymptotically stable.

The preceding theorem may be used to establish stability criteria for the case when f ′ (x∗) = −1. But before

doing so, we need to introduce the notion of the Schwarzian derivative.

Definition 1.6.1 The Schwarzian derivative, S f , of a function f is defined by
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S f (x) =
f ′′′(x)
f ′(x)

−
3
2

[
f ′′(x)
f ′(x)

]2

(1.27)

And if f ′ (x∗) = −1, then

S f (x∗) = − f ′′′ (x∗) −
3
2
[

f ′′ (x∗)
]2 (1.28)

Theorem 1.6.4 Let x∗ be a fixed point of a map f such that f ′ (x∗) = −1. If f ′(x), f ′′(x), and f ′′′(x) are continuous

at x∗, then the following statements hold:

1. If S f (x∗) < 0, then x∗ is asymptotically stable.

2. If S f (x∗) > 0, then x∗ is unstable.
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Proof. The main idea of the proof is to create an associated function 1 with the property that 1′ (x∗) = 1,

so that we can use Theorem 1.5. This function is indeed 1 = f ◦ f = f 2. Two important facts need

to be observed here. First, if x∗ is a fixed point of f , then it is also a fixed point of 1. Second, if x∗ is

asymptotically stable (unstable) with respect to 1, then it is also asymptotically stable (unstable) with

respect to f . By the chain rule:

1′(x) =
d
dx

f ( f (x)) = f ′( f (x)) f ′(x) (1.29)

Hence,

1′(x) = ( f ′′ (x∗))2

and Theorem now applies. For this reason we compute 1′′ (x∗). From Equation (1.29) , we have

1′′(x) = f ′( f (x)) f ′′(x) + f ′′( f (x))( f ′(x))2 (1.30)

1′′ (x∗) = f ′ (x∗) f ′′ (x∗) + f ′′ (x∗) ( f ′ (x∗))2

= 0
(

since f ′ (x∗) = −1
)
. (1.31)

Computing 1′′′(x) from Equation (1.31), we get

1′′′ (x∗) = −2 f ′′′ (x∗) − 3( f ′′ (x∗))2 (1.32)

It follows from Equation (1.29)

1′′′ (x∗) = 2 S f (x∗) (1.33)

Statements 1 and 2 now follow immediately from Theorem 1.6.3
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Remark 1.6.1 Note that if f ′ (x∗) = −1 and 1 = f ◦ f , then from (1.31) we have

S f (x∗) =
1
2
1′′′ (x∗) ∗ (1.34)

Furthermore,

1′′ (x∗) = 0 (1.35)

We are now ready to give an example of a nonhyperbolic fixed point.

Example 1.6.4 Consider the map f (x) = x2 + 3x on the interval [−3, 3]. Find the equilibrium points and then

determine their stability.

SOLUTION The fixed points of f are obtained by solving the equation x2 + 3x = x. Thus, there are two

fixed points: x∗1 = 0 and x∗2 = −2. So for x∗1, f ′(0) = 3, which implies by Theorem 1.3 that x∗1 is unstable.

For x∗2, we have f ′(−2) = −1, which requires the employment of Theorem 1.6. We observe that

S f (−2) = − f ′′′(−2) −
3
2
[

f ′′(−2)
]2 = −6 < 0

Hence, x∗2 is asymptotically stable (see Fig. 1.19).
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Diagram 1.20 provides a complete classification of fixed points which goes beyond the material in

this section. Detailed analysis of the contents in the diagram may be found in [22]. In the cases when

S f (x∗) = 0 and f ′′′ (x∗) = 0 were investigated. In the diagram, we have S1 f (x) = S f (x), S2 f (x) = 1
21

(5)(x),

where 1 = f 2, and more generally Sk f (x) = 1
21(2k + 1)(x).

1.7 Periodic Points and their Stability

The notion of periodicity is one of the most important notion in the field of dynamical systems. Its

importance stems from the fact that many physical phenomena have certain patterns that repeat them-

selves. These patterns produce cycles (or periodic cycles), where a cycle is understood to be the orbit of

a periodic point. In this section, we address the questions of existence and stability of periodic points.

Definition 1.7.1 Let x̄ be in the domain of a map f . Then,

1. x̄ is said to be a periodic point of f with period k if f k(x̄) = x̄ for some positive integer k. In this case x̄ may

be called k-periodic. If in addition f r(x̄) , x̄ for 0 < r < k, then k is called the minimal period of x̄. Note

that x̄ is k-periodic if it is a fixed point of the map f k.

2. x̄ is said to be an eventually periodic point of a period k and delay m if f k+m(x̄) = f m(x̄) for some positive

integer k and m ∈ Z+(see Fig. 1.21). Notice that if k = 1, then f
(

f m(x̄)
)

= f m(x̄) and x̄ is then an eventually

fixed point, and if m = 0, then x̄ is k-periodic. In other words, x̄ is eventually periodic if f k(x̄) is periodic, for

some positive integer k.

The orbit of a k-periodic point is the set

O(x̄) =
{
x̄, f (x̄), f 2(x̄), . . . , f k−1(x̄)

}
and is often called a k-periodic cycle. Graphically, a k-periodic point is the x coordinate of a point at which the

graph of the map f k meets the diagonal line y = x.

Next we turn our attention to the question of stability of periodic points.

Definition 1.7.2 Let x̄ be a periodic point of f with minimal period k. Then,
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FIGURE 1.21 An eventually periodic point x̄ : The orbit of x̄ goes into a 2-periodic cycle {x̄1, x̄2}.

1. x̄ is stable if it is a stable fixed point of f k.

2. x̄ is asymptotically stable if it is an asymptotically stable fixed point of f k.

3. x̄ is unstable if it is an unstable fixed point of f k.

Thus, the study of the stability of k-periodic solutions of the difference equation

x(n + 1) = f (x(n)) (1.36)

reduces to studying the stability of the equilibrium points of the associated difference equation

y(n + 1) = 1(y(n)) (1.37)

where 1 = f k.

The next theorem gives a practical criteria for the stability of periodic points based on Theorem 1.6.1 in the

preceding section.

Theorem 1.7.1 Let O(x̄) =
{
x̄, f (x̄), . . . , f k−1(x̄)

}
be the orbit of the k-periodic point x̄, where f is a continuously

differentiable function at x̄. Then the following statements hold true:

1. x̄ is asymptotically stable if

∣∣∣∣ f ′ (x̄1) f ′
(

f (x̄2)
)
. . . f ′

(
f k−1 (x̄k)

)∣∣∣∣ < 1 (1.38)
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2. x̄ is unstable if

∣∣∣∣ f ′(x̄) f ′( f (x̄)) . . . f ′
(

f k−1(x̄)
)∣∣∣∣ > 1 (1.39)

Proof. By using the chain rule, we can show that

d
dx

f k(x̄) = f ′(x̄) f ′( f (x̄)) . . . f ′
(

f k−1(x̄)
)

Conditions (1.38) and (1.39) now follow immediately by application of Theorem 1.6.1 to the composite

map 1 = f k.

Example 1.7.1 Consider the difference equation x(n + 1) = f (x(n)) where f (x) = 1− x2 is defined on the interval

[−1, 1]. Find all the 2-periodic cycles, 3 -periodic cycles, and 4 -periodic cycles of the difference equation and

determine their stability.

SOLUTION First, let us calculate the fixed points of f out of the way. Solving the equation x2+x−1 = 0,

we find that the fixed points of f are x∗1 = − 1
2 −

√
5

2 and x∗2 = − 1
2 +

√
5

2 . Only x∗2 is in the domain

of f . The fixed point x∗2 is unstable. To find the two cycles, we find f 2 and put f 2(x) = x. Now,

f 2(x) = 1 −
(
1 − x2

)2
= 2x2

− x4 and f 2(x) = x yields the equation

x
(
x3
− 2x + 1

)
= x(x − 1)

(
x2 + x − 1

)
= 0

Hence, we have the 2-periodic cycle {0, 1}; the other two roots are the fixed points of f . To check the

stability of this cycle, we compute
∣∣∣ f ′(0) f ′(1)

∣∣∣ = 0 < 1. Hence, by Theorem 1.7, the cycle is asymptotically

stable (Fig. 1.22).

Next we search for the 3 -periodic cycles. This involves solving algebraically a sixth-degree equation,

which is not possible in most cases. So, we resort to graphical (or numerical) analysis. Figure 1.23 shows

that there are no 3periodic cycles. Moreover, Fig. 1.24 shows that there are no 4 -periodic cycles.

Since f−1(x) =
√

1 − x, it follows that the point f−1
(
x∗2

)
=

√
3−
√

5
2 is an eventually fixed point. Let

1 = f 2. Then 1−1(x) =

√
1 +
√

1 − x. Now 1−1(0) =
√

2 which is outside the domain of f . Hence f has no

eventually periodic points.
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FIGURE 1.22 (a) A 2-periodic cycle {x̄1, x̄2}; (b) Periodic points of f : x̄1, and x̄2 are fixed points of f 2;

(c) Periodic points of f : x̄1, and x̄2 are asymptotically stable fixed points of f 2.

FIGURE 1.23 f 3 has no "genuine" fixed points, it has a fixed point x∗ which is a fixed point of f , f has

no points of period 3 .
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FIGURE 1.24 f 4 has no "genuine" fixed points, it has three fixed points, a fixed point x∗ of f and two

fixed points x̄1, x̄2 of f 2, f has no 4 -periodic cycles.

Example 1.7.2 (The Tent Map Revisited).

The tent map T is defined as

T(x) =


2x; 0 ≤ x ≤ 1

2

2(1 − x); 1
2 < x ≤ 1

It may be written in the compact form

T(x) = 1 − 2
∣∣∣∣∣x − 1

2

∣∣∣∣∣
Find all the 2-periodic cycles and the 3-periodic cycles of T and determine their stability.

SOLUTION First, we observe that the fixed points of T are x∗1 = 0 and x∗2 = 2
3 ; they are unstable since

|T′| = 2. To find the 2-periodic cycles, we compute T2. After some computation, we obtain

T2(x) =



4x; 0 ≤ x < 1
4

2(1 − 2x); 1
4 ≤ x < 1

2

4
(
x − 1

2

)
; 1

2 ≤ x < 3
4

4(1 − x); 3
4 ≤ x ≤ 1

There are four fixed points of T2 : 0, 2
5 ,

2
3 ,

4
5 , two of which

(
0, 2

3

)
, are fixed points of T. Thus,

{
2
5 ,

4
5

}
is

the only 2-periodic cycle [see Fig. 1.25(b)]. Since
∣∣∣∣T′ ( 2

5

)
T′

(
4
5

)∣∣∣∣ = 4 > 1, this 2-periodic cycle is unstable
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(Theorem 1.7.1). From Fig. 1.25(c), we observe that T3 has eight fixed points, two of which are fixed

points of T. Thus, there are two periodic cycles of period 3. It is easy to check that these cycles are

C1 =
{

2
7 ,

4
7 ,

6
7

}
and C2 =

{
2
9 ,

4
9 ,

8
9

}
, both of which are unstable.

Note that the point 3
5 is an eventually 2-periodic point as 3

5 →
2
5 →

4
5 . Moreover, the point 3

7 is

an eventually 3-periodic point since 3
7 →

6
7 →

2
7 →

4
7 . A general result characterizing periodic and

eventually periodic points of the tent map will be given in Section 3.2.

FIGURE 1.25 (a) The tent map T has two fixed points; (b) T2 has 4 fixed points, 2 periodic points x̄1, x̄2,

and 2 fixed points x∗1, x
∗

2 of T; (c) T3 has 8 fixed points, two cycles of period 3 and two fixed maps of T.

1.8 The Period-Doubling Route to Chaos

We end this chapter by studying in detail the logistic map:

Fµ(x) = µx(1 − x) (1.40)

which gives rise to the logistic difference equation

x(n + 1) = µx(n)(1 − x(n)) (1.41)

where x ∈ [0, 1] and µ ∈ (0, 4].

1.8.1 Fixed Points

Let us begin our exposition by examining the equilibrium points of Equation (1.41). There are two fixed

points of Fµ : x∗1 = 0 and x∗2 =
µ−1
µ . We now examine the stability of each fixed point separately.

1. The fixed point x∗1 = 0 : observe that F′µ(0) = µ. Therefore, from Theorem 1.6.1, we conclude

(a) x∗1 is asymptotically stable if 0 < µ < 1 [see Fig. 1.26(a)].

(b) x∗1 is unstable if µ > 1 [see Fig. 1.26(c)].

The case where µ = 1 needs special attention, for we have F′1(0) = 1 and F′′1 (0) = −2 , 0. By applying

Theorem 1.6.3, we may conclude that 0 is unstable. This is certainly true if we consider negative as well

33



1.8. THE PERIOD-DOUBLING ROUTE TO CHAOS

as positive initial points in the neighborhood of 0. Since negative initial points are not in the domain of

Fµ, we may discard them and consider only initial points in neighborhoods of 0 of the form (0, δ). Now,

Problem 17a in

(a)

(b)
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(c)

FIGURE 1.26 (a) 0 < µ < 1 : 0 is asymptotically stable; (b) µ = 1 : 0 is asymptotically stable; (c)

µ > 1 : 0 is unstable.

Exercises 1.7 tells us that the fixed point is semiasymptotically stable from the right. In other words,

x∗1 = 0 is asymptotically stable in the domain [0, 1] [see Fig. 1.26(b)].

2. The fixed point x∗2 =
µ−1
µ : Clearly x∗2 will be in the interval (0, 1] if µ > 1. Moreover, F′µ

(
µ−1
µ

)
=

µ − 2µ
(
µ−1
µ

)
= 2 − µ. Thus, by Theorem 1.6.1, x∗2 is asymptotically stable if |2 − µ| < 1. Solving this

inequality for µ, we obtain 1 < µ < 3 as the values of µ where x∗2 is asymptotically stable [see Fig.

1.27(a)]. When µ = 3, we have F′3
(
x∗2

)
= F′3

(
2
3

)
= −1, and x∗2 is therefore nonhyperbolic. In this case,

we need to compute the Schwarzian derivative: SF′3
(
x∗2

)
= − 3

2 (36) < 0. Hence, by Theorem 1.6.4,

the equilibrium point x∗2 = 2
3 is asymptotically stable under F3 [see Fig. 1.27(a)]. Furthermore, by

Theorem 1.6.1, the fixed point x∗2 is unstable for µ > 3. We now summarize our findings.

(a) x∗2 is asymptotically stable for 1 < µ ≤ 3.

(b) x∗2 is unstable for µ > 3 [see Fig. 1.27(b)].

Looking at Fig. 1.27(b), we observe that the orbit of x0 flips around x∗2 and then settles bouncing

between two points, which indicates the appearance of a 2-periodic cycle.

1.8.2 2-Periodic Cycles

To find the 2-periodic cycles we solve the equation F2
µ(x) = x, or

µ2x(1 − x)[1 − µx(1 − x)] − x = 0 (1.42)
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FIGURE 1.27 (a) 1 < µ ≤ 3, x∗2 is asymptotically stable, and (b) µ > 3x∗2 is unstable.

Discarding the equilibrium points 0 and µ−1
µ by dividing the left side of Equation (1.42) by x

(
x − µ−1

µ

)
,

we obtain

µ2x2
− µ(µ + 1)x + (µ + 1) = 0

Solving this equation,

x̄1 =
(1 + µ) −

√
(µ − 3)(µ + 1)
2µ

and x̄2 =
(1 + µ) +

√
(µ − 3)(µ + 1)
2µ

(1.43)

Clearly x̄1 and x̄2 are defined only if µ > 3. Next, we investigate the stability of this 2-periodic cycle.

By Theorem 1.7.1, this 2-periodic cycle is asymptotically stable if

∣∣∣F′µ (x̄1) F′µ (x̄2)
∣∣∣ < 1

or

− 1 < µ2 (1 − 2x̄1) (1 − 2x̄2) < 1

− 1 < µ2

1 −
(1 + µ) −

√(
µ2 − 2µ − 3

)
µ

 1 −
(1 + µ) +

√(
µ2 − 2µ − 3

)
µ

 < 1

− 1 < −µ2 + 2µ + 4 < 1

Solving the last two inequalities yields the range: 3 < µ < 1 +
√

6 for asymptotic stability. Now, for

µ = 1 +
√

6,

F′µ (x̄1) F′µ (x̄2) = −1

In this case, we need to apply Theorem 1.6.4 on F2
µ to determine the stability of the periodic points x̄1

and x̄2 of Fµ. After some computation, we conclude

that SFF2
µ (x̄1) < 0 and SF2

µ (x̄2) < 0, which implies that the cycle {x̄1, x̄2} is asymptotically stable (Problem

1). Moreover, the periodic cycle {x̄1, x̄2} is unstable for µ > 1 +
√

6.
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In summary:

1. 3 < µ ≤ 1 +
√

6 : The 2 -periodic cycle {x̄1, x̄2} is asymptotically stable.

2. µ > 1 +
√

6 : The 2-periodic cycle {x̄1, x̄2} is unstable.

Thus, the positive equilibrium point is asymptotically stable for 1 < µ ≤ 3, where it loses its stability

after µ1 = 3. For µ > µ1, an asymptotically stable 2-periodic cycle appears where it loses its stability after

a second magic number µ2 = 1 +
√

6 ≈ 3.44949 . . ., etc.

1.8.3 22-Periodic Cycles

The search for 4-periodic cycles can be successful if one is able to solve the equation F4
µ(x) = x. This

involves solving a twelfth-degree equation, which is not possible in general. So we turn to graphical or

numerical analysis to help us find the 4 -periodic cycles (see Fig. 1.28). It turns out that there is one 22
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FIGURE 1.28 The appearance of a 4-periodic cycle. An exchange of stability occurs at µ = 1 between

x∗1 = 0 and x∗2 = (µ − 1)/µ.

Cycle when µ > 1 +
√

6 which is asymptotically stable for 1 +
√

6 < µ ≤ 3.54409. This 22 cycle loses

its stability when µ > 3.54409. Again, the story repeats itself, when µ > µ3, the 22 cycle bifurcates into

an asymptotically stable 23

cycle. This process of double bifurcation continues indefinitely and produces a sequence
{
µn

}∞
n=1. Table

1.2 sheds some light on some remarkable patterns:

TABLE 1.2

n µn µn − µn−1
µn−µn−1

µn+1−µn

1 3 - -

2 3.449489 . . . 0.449489 . . . -

3 3.544090 . . . 0.094601 . . . 4.751419 . . .

4 3.564407 . . . 0.020317 . . . 4.656248 . . .

5 3.568759 . . . 0.0043521 . . . 4.668321 . . .

6 3.569692 . . . 0.00093219 . . . 4.668683 . . .

7 3.569891 . . . 0.00019964 . . . 4.669354 . . .

From Table 1.2, we make the following observations (which can be proved, at least numerically):

1. The sequence
{
µn

}
seems to tend to a specific number, µ∞ ≈ 3.570.

2. The window size
(
µn − µn−1

)
between successive µi values gets narrower and narrower, eventually

approaching zero.

3. The ratio
µn − µn−1

µn+1 − µn
approaches a constant called Feigenbaum number δ named after its discoverer,

Mitchell Feigenbaum. In fact,
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δ = lim
n→∞

µn − µn−1

µn+1 − µn
≈ 4.669201609 . . . (1.44)

Feigenbaum discovered that the number δ is universal and does not depend on the family of maps

under discussion; it is the same for a large class of maps, called unimodal maps.

Formula (1.44) may be used to generate the sequence
{
µn

}
with good accuracy. We let δ =

µn − µn−1

µn+1 − µn
and solve for µn+1. Then, we obtain

µn+1 = µn +
µn − µn−1

δ
(1.45)

For example, given µ1 = 3 and µ2 = 1 +
√

6 (in Table 1.2), then from Formula (1.45) we get µ3 =

(1 +
√

6) +
(1+
√

6)−3
4.6692 ≈ 3.54575671, which is a good approximation of the actual µ3 in Table 1.2.
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