

République Algérienne Démocratique et Populaire

Ministre de l'Enseignement Supérieur et de la

Recherche Scientifique

Centre Universitaire Abdel Hafid Boussouf
Mila

Série de TD N°01 Mécanique de Propulsion

Destiné aux Etudiants de la 2ème Année master Mécanique Energétique

Chapitre I : Principe de Propulsion

Elaboré par : **Dr. ZEGHBID Ilhem**

Année universitaire 2020-2021

Série de TD N°01 : Principe de Propulsion

CHAPITRE I : PRINCIPE DE PROPULSION <u>SERIE DE TD N°01</u>

Exemple N°01:

Un avion se déplace en vol horizontal rectiligne, uniforme à la vitesse de 180 m/s, la consommation de combustible de P_{C}^{i} = 56 000 kJ/kg est 0.09 kg/Nh. On brûle 1kg de ce combustible dans 90 kg d'air, la poussée F= 15 000N.

Déterminer :

- 1. Le débit massique d'air traversant le réacteur.
- 2. La vitesse d'éjection du gaz
- 3. La puissance dépensée utile et propulsive
- 4. Le rendement global

Exemple N•02 :

En fait les mesures suivantes sur un Turboréacteur au banc d'essai :

Entrée: pression 10.1 N/cm², température 20°C

Sortie : vitesse 520 m/s, température 430°C, poussée 18 000N

Déterminer :

- 1. Le débit massique d'air traversant le réacteur
- 2. La quantité de chaleur apportée par le combustible
- 3. La consommation en kg/Nh de pétrole de P_Ci= 42 000 kJ/kg.

Exemple $N^{\bullet}03$:

Etudier le Turboréacteur suivant :

- Fonctionnement au sol : $T_0=15$ °C, $P_0=101.325$ Kpa.
- Taux de compression r_c=5
- Température de fin de combustion T=850°C
- Rendement isentropique de la turbine, du compresseur et de la tuyère est de 0.8
- Le pouvoir calorifique inférieur du combustible est 44.10⁶ J/s
- Le débit massique d'air est 65 kg/s

Calculer:

- La vitesse d'éjection des gaz et la poussée développée
- La consommation spécifique horaire du combustible
- Le rendement global

Données: Cp_a=1004.5 J/kgK, Cp_g=1148 J/kgK, γ_a =1.4, γ_g =1.34, \dot{m}_c = 0.993 kg/s.

Exemple N°04:

Soit le turboréacteur suivant :

Le Mach M=0.9

- Rapport de compression dans le compresseur r_c=20
- Rapport de compression dans la soufflante 1.6
- Rendement isentropique dans le diffuseur 0.95
- Rendement isentropique de la turbine 0.91
- Rendement isentropique de la tuyère 0.98
- Rendement isentropique de la soufflante et le compresseur 0.87
- Pouvoir calorifique du carburant 44 000 kJ/kg
- Pression d'entrée 18 Kpa
- Température d'entrée 210K
- Le débit massique de l'air primaire $\dot{m}_a = 30 \text{ kg/s}$.
- Le débit massique de l'air secondaire $\dot{m}_{a,s}$ = 60 kg/s.

On donne : $Cp_a=1004.5 \text{ J/kgK}$, $Cp_g=1130 \text{ J/kgK}$, $\gamma_a=1.4$, $\gamma_g=1.34$.

Calculer la poussée développée et le rendement thermopropulsif pour les deux cas :

- Cas d'un flux mélangé
- Mélange à pression constante