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Chapter 1
Differentiable Functions

1.1 The Derivative

1.1.1 Definition and basic properties

Definition 1.1.1. Let I be an interval, and c ∈ I, let f : I −→ R be a function defined in the

neighborhood of c. If the limit

l = lim
x−→c

f(x)− f(c)
x− c

,

exists in R, then we say that f is differentiable at c. When this limit exists, it is denoted by

f ′(c) and called the derivative of f at c.

If f is differentiable at all c ∈ I, then we simply say that f is differentiable. The derivative

is sometimes written as df

dx
or d

dx
(f(x)). The expression f(x)− f(c)

x− c
is called the difference

quotient.

The graphical interpretation of the derivative is depicted in Figure 1.1. The left-hand plot

gives the line through (c, f(c)) and (x, f(x)) with slope f(x)− f(c)
x− c

, that is, the so-called secant

line. When we take the limit as x goes to c, we get the right-hand plot, where we see that the

derivative of the function at the point c is the slope of the line tangent to the graph of f at the

point (c, f(c)).
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Figure 1.1: Graphical interpretation of the derivative

Example 1.1.2. Let f(x) = x2 defined on the whole real line, and let c ∈ R be arbitrary. We

find that if x 6= c,

x2 − c2

x− c
= (x+ c)(x− c)

x− c
= x+ c.

Therefore,

f ′(c) = lim
x−→c

x2 − c2

x− c
= lim

x−→c
(x+ c) = 2c.

Example 1.1.3. The function f(x) =
√
x is differentiable for x > 0. To see this fact, fix c > 0,

and suppose x 6= c and x > 0. Compute
√
x−
√
c

x− c
=

√
x−
√
c

(
√
x−
√
c)(
√
x+
√
c) = 1√

x+
√
c
.

Therefore,

f ′(c) = lim
x−→c

√
x−
√
c

x− c
= lim

x−→c

1√
x+
√
c

= 1
2
√
c
.

Remark 1.1.4. If we put x− c = h, the quantity f(x)− f(c)
x− c

becomes f(c+ h)− f(c)
h

. So we

can define the notion of differentiability of f at c in the following way:

f is differentiable at c⇔ lim
h−→0

f(c+ h)− f(c)
h

exists in R.

Proposition 1.1.5. Let f : I −→ R be differentiable at c ∈ I, then it is continuous at c.
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Proof 1.1.6. We know the limits

lim
x−→c

f(x)− f(c)
x− c

= f ′(c), and lim
x−→c

(x− c) = 0.

exists. Furthermore,

f(x)− f(c) =
(
f(x)− f(c)

x− c

)
(x− c),

Therefore, the limit of f(x)− f(c) exists and

lim
x−→c

(f(x)− f(c)) =
(

lim
x−→c

f(x)− f(c)
x− c

)(
lim

x−→c
(x− c)

)
= f ′(c).0 = 0.

Hence lim
x−→c

f(x) = f(c), and f is continuous at c.

Proposition 1.1.7. If f is differentiable over I, then f is continuous over I.

Proposition 1.1.8. Let I be an interval, let f : I −→ R and g : I −→ R be a differentiable

functions at c ∈ I, and let α ∈ R, then:

1. The linearity:

• Define h : I −→ R by h(x) = α.f(x). Then h is differentiable at c and h′(c) =

α.f ′(c).

• Define h : I −→ R by h(x) = f(x) + g(x). Then h is differentiable at c and

h′(c) = f ′(c) + g′(c).

2. Product rule:

If h : I −→ R is defined by h(x) = g(x)f(x), then h is differentiable at c and

h′(c) = f(c)g′(c) + f ′(c)g(c).

Proof 1.1.9. We have:
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lim
h→0

(f.g) (c+ h)− (f.g) (c)
h

= lim
h→0

f (c+ h) .g (c+ h)− f (c) .g (c)
h

= lim
h→0

[
f(c+ h)[g(c+ h)− g(c)]

h
+ [f(c+ h)− f(c)]g(c)

h

]

= lim
h→0

f(c+ h)lim
h→0

g(c+ h)− g(c)
h

+ lim
h→0

f(c+ h)− f(c)
h

lim
h→0

g(c)

= f ′(c)g(c) + f(c)g′(c).

3. Quotient rule:

If g(x) 6= 0 for all x ∈ I, and if h : I −→ R is defined by h(x) = f(x)
g(x) , then h is

differentiable at c and

h′(c) = f ′(c)g(c)− f(c)g′(c)
(g(c))2 .

1.1.2 Chain rule

Proposition 1.1.10. Let I, and J be an intervals, let g : I −→ J be a differentiable at c ∈ I,

and f : J −→ R be differentiable at g(c). If h : I −→ R is defined by

h(x) = (f ◦ g)(x) = f(g(x)),

then h is differentiable at c and

h′(c) = f ′(g(c))g′(c).

1.1.3 Inverse function

Proposition 1.1.11. Let I ⊂ R be an interval, and let f be an injective and continuous

function on I. If f is differentiable at a point c with f ′(c) 6= 0, then the inverse function:

f−1 : f(I) −→ R is differentiable at f(c) and
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(f−1(f(c)))′ = 1
f ′(c) .

1.2 Left and Right Derivatives

Definition 1.2.1. Let f : [a, b] −→ R be a function, we say that f is right-differentiable at

a ≤ c < b with right derivative f ′(c+) if

lim
>

x−→c

f(x)− f(c)
x− c

= f ′(c+),

exists, and f is left-differentiable at a < c ≤ b with left derivative f ′(c−) if

lim
<

x−→c

f(x)− f(c)
x− c

= f ′(c−) exists.

A function is differentiable at a < c < b if and only if the left and right derivatives exist at c

and are equal.

Remark 1.2.2. If f ′(c+) and f ′(c−) exist but f ′(c+) 6= f ′(c−) then f is not differentiable at c

and point (c, f(c)) is an angular point.

Example 1.2.3. The absolute value function f(x) = |x| is left and right differentiable at 0

with left and right derivatives

f ′(0+) = 1 and f ′(0−) = −1.

These are not equal, and f is not differentiable at 0.

1.3 Successive Derivatives and Leibnitz’s Rule

1.3.1 Successive derivatives

Let f be a function differentiable on I, then f ′ is called the first order derivative of f , if f ′ is

differentiable on I, then its derivative is called the second order derivative of f and is denoted by

f ′′ or f (2). Recursively, we define the derivative of order n of f as follows: f (n)(x) = (f (n−1)(x))′.
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Example 1.3.1. 1). Let f(x) = sin(x). Calculate f (n)(x). We have:

f (0)(x) = sin(x),

f ′(x) = f (1)(x) = cos(x) = sin(x+ π

2 ),

f (2)(x) = − sin(x) = sin(x+ π),

f (3)(x) = − cos(x) = sin(x+ 3π
2 ),

f (4)(x) = sin(x) = sin(x+ 2π),
...

f (n)(x) = sin(x+ nπ

2 ).

2). f(x) = ln x. Calculate f (n)(x). We have:

f (0)(x) = ln x, f ′(x) = 1
x
,

f (2)(x) = −1
x2 , f (3)(x) = 2

x3 ,

f (4)(x) = −2× 3
x4 , f (5)(x) = 2× 3× 4

x5 = 4!
x5 ,

...

f (n)(x) = (−1)n+1 (n− 1)!
xn

, n ∈ N∗.

Definition 1.3.2. (Class Functions: Cn)

Let n be a non-zero natural number. A function f defined on I is said to be of class Cn or n

times continuously differentiable if it is n times differentiable and f (n) is continuous on I, and

we note f ∈ Cn(I).

Remark 1.3.3. A function f is said to be of class C0 if it is continuous on I.

Definition 1.3.4. (Class Functions: C∞)

A function f is said to be of class C∞ on I if it is in the class Cn. ∀n ∈ N. For example

f(x) = ex.
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1.3.2 Leibnitz formula

Theorem 1.3.5. Let f and g be two functions n times differentiable on I, then f×g is n−times

differentiable on I, and we have:

(f × g)(n) = ∑n
k=0 C

k
n f (n−k) g(k), Ck

n = n!
k!(n− k)! .

Example 1.3.6. For n = 2, we have:

(f × g)(2) = C0
2f
′′g + C1

2f
′g′ + C2

2fg
′′

= f ′′g + 2f ′g′ + fg′′.

For n = 6, we have:

(f × g)(6) = C0
6f

(6)g + C1
6f

(5)g′ + C2
6f

(4)g′′ + C3
6f

(3)g(3) + C4
6f
′′g(4) + C5

6f
′g(5) + C6

6fg
(6)

= f (6)g + 6f (5)g′ + 15f (4)g′′ + 20f (3)g(3) + 15f ′′g(4) + 6f ′g(5) + fg(6).

If h(x) = (x3 + 5x+ 1) ex = f(x)g(x), then:

f ′(x) = 3x2 + 5, g′(x) = ex,

f ′′(x) = 6x, g′′(x) = ex,

f (3)(x) = 6, g(3)(x) = ex,

f (4)(x) = 0, g(4)(x) = ex,

f (n)(x) = 0, ∀n ≥ 4, g(n)(x) = ex.

So:

h(n)(x) = C0
nfg

(n) + C1
nf
′g(n−1) + C2

nf
′′g(n−2) + C3

nf
(3)g(n−3) + C4

nf
(4)g(n−4) + · · ·

= (x3 + 5x+ 1)ex + n(3x2 + 5)ex + n(n− 1)
2 (6x)ex + n(n− 1)(n− 2)

6 6ex.
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1.4 The Mean Value Theorem

1.4.1 Extreme values

Definition 1.4.1. A critical point of a function f(x), is a value c in the domain of f where f

is not differentiable or its derivative is 0 (i.e. f ′(c) = 0).

Definition 1.4.2. A function f is said to have a local maximum (local minimum) at c if f is

defined on an open interval I containing c and f(x) ≤ f(c) (f(x) ≥ f(c)) for all x ∈ I. In

either case, f is said to have a local extremum at c.

Figure 1.2: Local extrema of f

1.4.2 Local extremum theorem

Theorem 1.4.3. If f has a local extremum at c and if f is differentiable at c, then f ′(c) = 0.

Proof. Suppose that f has a local maximum at c. Let I be an open interval containing c such

that f(x) ≤ f(c) for all x ∈ I. Then:

f(x)− f(c)
x− c

=


≥ 0, if x ∈ I and x < c,

≤ 0, if x ∈ I and x > c.

It follows that the left-hand derivative of f at c is ≥ 0 and the right-hand derivative is ≤ 0,

hence f ′(c) = 0. The proof for the local minimum case is similar.
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1.4.3 Rolle’s theorem

Theorem 1.4.4. Let f be a continuous function on [a, b] and differentiable on ]a, b[. If f(a) =

f(b), then there exists a point c ∈]a, b[ such that f ′(c) = 0.

Proof. By the extreme value theorem there exist xm, xM ∈ [a, b] such that f(xm) ≤ f(x) ≤

f(xM) for all x ∈ [a, b]. If f(xm) = f(xM), then f is a constant function and the assertion of

the theorem holds trivially. If f(xm) 6= f(xM), then either xm ∈]a, b[ or xM ∈]a, b[, and the

conclusion follows from the local extremum theorem.

1.4.4 Mean value theorem

Theorem 1.4.5. If f is continuous on [a, b] and differentiable on ]a, b[, then there exists c ∈]a, b[

such that:

f(b)− f(a)
b− a

= f ′(c).

Proof. The function g : [a, b] −→ R defined by:

g(x) = f(x)− f(a)−
[
f(b)− f(a)

b− a

]
(x− a),

is continuous on [a, b] and differentiable on ]a, b[ with

g′(x) = f ′(x)− f(b)− f(a)
b− a

.

Moreover, g(a) = g(b) = 0. Rolle’s theorem implies that there exists a < c < b such that

g′(c) = 0, which proves the result.

1.4.5 Mean value inequality

Let f be a continuous function on [a, b], and differentiable on ]a, b[. If there exists a constant

M such that: ∀ x ∈]a, b[: |f ′(x)| ≤M , then

∀ x, y ∈ [a, b] : |f(x)− f(y)| ≤M |x− y|.
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According to the Mean value theorem on [x, y], ∃ c ∈]x, y[: f ′(c) = f(x)− f(y)
x− y

. Then

|f ′(c)| ≤M =⇒
∣∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣∣ ≤M =⇒M |x− y| .

1.5 Variation of a Functions

Let f be a continuous function on [a, b], and differentiable on ]a, b[ then:

1. ∀ x ∈]a, b[: f ′(x) > 0⇐⇒ f is strictly increasing on [a, b].

2. ∀ x ∈]a, b[: f ′(x) < 0⇐⇒ f is strictly decreasing on [a, b].

3. ∀ x ∈]a, b[: f ′(x) = 0⇐⇒ f is a constant.

1.6 L’Hpital’s Rule

Let f and g be two continuous functions on I (I is a neighborhood of c), differentiable on

I − {c}, and satisfying the following conditions:

• lim
x−→c

f(x) = lim
x−→c

g(x) = 0 or ±∞.

• g′(x) 6= 0, ∀x ∈ I − {c}.

then:

if lim
x−→c

f ′(x)
g′(x) = l =⇒ lim

x−→c

f(x)
g(x) = l.

Example 1.6.1. Using L’Hopital’s rule:

1. lim
x−→0

3x− sin x
x

= lim
x−→0

3− cosx
1 = 2.

2. lim
x−→0

√
1 + x− 1

x
= lim

x−→0

1
2
√

1+x

1 = 1
2 .
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Remark 1.6.2. The converse is generally false. For example: f(x) = x2 cos( 1
x
), and g(x) = x,

so we have lim
x−→0

f(x)
g(x) = lim

x−→0
x cos( 1

x
) = 0 while lim

x−→0

f ′(x)
g′(X) = lim

x−→0
(2x cos( 1

x
) + sin( 1

x
)) does not

exists because ( lim
x−→0

sin( 1
x
) does not exists).

1.7 Convex Functions

Definition 1.7.1. A function f is said to be convex on an interval I if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀ t ∈ [0.1], x, y ∈ I.

f is concave if −f is convex.

Example 1.7.2. 1. The function x −→ |x| is convex on R because |tx+ (1 + t)y| ≤ t |x|+

(1− t) |y|.

2. The affine functions f : x −→ αx + β are both convex and concave on R, because they

indeed satisfy f(xt + (1 − t)y) = tf(x) + (1 − t)f(y). Conversely, if a function is both

convex and concave then it is affine.

Theorem 1.7.3. If f :]a, b[−→ R has an increasing derivative, then f is convex. In particular,

f is convex if f ′′ ≥ 0.

Example 1.7.4. Consider the function f : R −→ R given by f(x) =
√
x2 + 1. We have

f ′(x) = x√
x2 + 1

, and f ′′(x) = 1
(x2 + 1) 3

2
. Since f ′′(x) ≥ 0 for all x, it follows from the

corollary that f is convex.

Remark 1.7.5. If f : I −→ R is convex then:

• f differentiable on the left and right (therefore continues) and f ′l ≤ f ′r.

• The functions f ′l , f ′r are increasing.

• f is continuous at every interior point of I.
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• Let f : I −→ R a differentiable function. Then f is convex ⇐⇒ f ′ is increasing on I.

• A concave function on I is continuous at all points interior to I.

• If f is differentiable and concave ⇐⇒ f is decreasing.
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