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Solution of series N◦3

Exercise 1:

1. f(x) =

√
x+ 1

x− 1
.

Df =

{
x ∈ R| x+ 1

x− 1
≥ 0, and x− 1 6= 0

}
x+ 1

x− 1
≥ 0 =⇒ x ∈ ]−∞,−1] ∪ [1,+∞[, and x − 1 6= 0 =⇒ x 6= 1, so

Df = ]−∞,−1] ∪ ]1,+∞[.

2. g(x) =
√
x2 + x− 2.

Dg = {x ∈ R| x2 + x− 2 ≥ 0} = ]−∞,−2] ∪ [1,+∞[.

3. h(x) = ln

(
2 + x

2− x

)
.

Dh =

{
x ∈ R| 2 + x

2− x
> 0, and 2− x 6= 0

}
, so Dh = ]−2, 2[.

4. k(x) =
sinx− cosx

x− π
.

Dk = {x ∈ R| x 6= π} = ]−∞, π[ ∪ ]π,+∞[.

5. p(x) = (1 + x)
1
x = e

1
x
ln(1+x).

Dp = {x ∈ R| x 6= 0, and 1 + x > 0} = ]−1, 0[ ∪ ]0,+∞[.

6. φ(x) =


sinx. cosx

x− π
if x 6= π

1 Otherwise

Dφ = R.

Exercise 2:

It is necessary to show that x1 < x2 =⇒ f(x1) < f(x2)

We have

f(x) =


x

1 + x
if x ≥ 0

x

1− x
if x < 0
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• If x1 < 0 < x2, then it is obvious that f(x1) < 0 < f(x2) (if one of the two is

zero it is also obvious).

• If 0 < x1 < x2, we note that: f(x) =
x

x+ 1
= 1− 1

1 + x
, so:

x1 < x2 =⇒ x1 + 1 < x2 + 1

=⇒ −1
x1 + 1

<
−1

x2 + 1

=⇒ 1− 1

x1 + 1
< 1− 1

x2 + 1

Therefore, f(x1) < f(x2), and f is strictly increasing.

• If x1 < x2 < 0, in the same way and take f(x) =
x

1− x
= −1 + 1

1− x
.

Exercise 3:

1. lim
x→+∞

ex−sinx, we have:

∀x ∈ R, −1 ≤ sinx ≤ 1

=⇒ −1 ≤ − sinx ≤ 1

=⇒ x− 1 ≤ x− sinx ≤ x+ 1

therefore: x− sinx ≥ x− 1 =⇒ ex−sinx ≥ ex−1, and because lim
x→+∞

ex−1 = +∞

then lim
x→+∞

ex−sinx = +∞.

2. lim
x→0

(tanx)2

cos(2x)− 1
.

We have cos(2x) = 2 cos2 x− 1, then

cos(2x)− 1 = 2 cos2 x− 2 = −2(1− cos2 x) = −2 sin2 x.

So

(tanx)2

cos(2x)− 1
=

sin2 x

cos2 x
−2 sin2 x

=
− sin2 x

2 cos2 x sin2 x
=

−1
2 cos2 x
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whene x −→ 0 then cos2 x −→ 1, therefore, lim
x→0

tan2 x

cos(2x)− 1
=
−1
2
.

3. lim
x→0+

x

b

[ c
x

]
. We have:

[ c
x

]
≤ c

x
≤
[ c
x

]
+ 1

=⇒ x

b

[ c
x

]
≤ x

b

c

x
≤ x

b

[ c
x

]
+
x

b

=⇒ 0 ≤ c

b
− x

b

[ c
x

]
≤ x

b

lim
x→0

x

b
= 0 =⇒ lim

x→0+

c

b
− x

b

[ c
x

]
= 0, so lim

x→0+

x

b

[ c
x

]
=
c

b
.

4. lim
x→0

ln(1 + x2)

sin2 x
. We use the L’Hpital’s rule, we set f(x) = ln(1 + x2), and

g(x) = sin2 x, then: f ′(x) =
2x

1 + x2
, and g′(x) = 2 sinx cosx.

f ′(x)

g′(x)
=

x

sinx
.

1

cosx(1 + x2)
, we note that lim

x→0

x

sinx
= 1

(
lim
x→0

sinx

x
= 1

)
, and

lim
x→0

1

(1 + x2) cosx
= 1, so lim

x→0

ln(1 + x2)

sin2 x
= 1.

5. lim
x→0

√
1 + x−

√
1− x

x
. we have:

lim
x→0

√
1 + x−

√
1− x

x
= lim

x→0

(1 + x)− (1− x)
x(
√
1 + x−

√
1− x)

= lim
x→0

2x

x(
√
1 + x−

√
1− x)

= 1.

6. lim
x→+∞

x lnx+ 5

x2 + 4
= lim

x→+∞

x lnx

(
1 +

5

x lnx

)
x2
(
1 +

4

x2

) = lim
x→+∞

lnx

x

1 +
5

x lnx

1 +
4

x2

 = 0.

Exercise 4:

1. We have:

f : R −→ R

x −→ f(x) =



sin ax

x
: x < 0

1 : x = 0

2bex − x : x > 0
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we note that for x > 0, and x < 0 the function f is continuous. For f to be

continuous on R, it must be continuous on the right and left of 0.

we have lim
x→0+

f(x) = lim
x→0+

2bex − x = 2b = f(0) = 1, so b =
1

2
.

And lim
x→0−

f(x) = lim
x→0−

sin ax

x
= a lim

x→0−

sin ax

ax
= a = f(0) = 1, so a = 1.

2. g(x) =


√
x− 1

x
, x ≥ 4

(x+ a)2, x < 4

For the function g to be continuous on R, it is enough to study the continuity

at point 4.

lim
x→4+

g(x) = lim
x→4+

√
x− 1

x
=

7

4
.

lim
x→4−

g(x) = lim
x→4−

(x+ a)2 = (4 + a)2.

g is continuous in 4, i.e.

lim
x→4+

g(x) = lim
x→4−

g(x)⇔ (4 + a)2 =
7

4
⇔ |4 + a| =

√
7

2
.

⇐⇒


4 + a =

√
7

2

−4− a =

√
7

2

⇐⇒


a =

√
7

2
− 4

a =
−
√
7

2
− 4

Exercise 5:

1. f(x) =


x+

√
x2

x
: x 6= 0

0 : x = 0

We note that the function f is continuous on R∗, for the continuity at 0 we

have:

lim
x→0+

f(x) = lim
x→0+

(x+ 1) = 1.

lim
x→0−

f(x) = lim
x→0−

(x− 1) = −1.

lim
x→0+

f(x) 6= lim
x→0−

f(x), so f is not continuous at 0.
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2. g(x) =


1 + x cos

(
1

x

)
: x 6= 0

0 : x = 0

the function g is continuous on R∗.

lim
x→0

g(x) = lim
x→0

(
1 + x cos

(
1

x

))
= 1.

because lim
x→0

x cos

(
1

x

)
= 0

(
0 <

∣∣∣∣x cos(1

x

)∣∣∣∣ < |x|). Since lim
x→0

g(x) = 1 6=

0 = g(0), then g is not continuous at 0.

Exercise 6:

1. f(x) =
x3 + 2x+ 3

x3 + 1
, Df = R− {−1}.

f is continuous on Df , as f is a quotient of two continuous polynoms. We

note that (−1) is a root of the numerator too so on Df we have

f(x) =
(x+ 1)(x2 − x+ 3)

(x+ 1)(x2 − x+ 1)
=

(x2 − x+ 3)

(x2 − x+ 1)

so lim
x→−1

f(x) = lim
x→−1

x2 − x+ 3

x2 − x+ 1
= 3 (exist), then f admits an extension by

continuity at the point (−1) given by:

∼
f =


f(x) : x 6= −1

3 : x = −1

2. g(x) =
(1 + x)n − 1

x
, Dg = R|{0}.

• If n = 0, then g(x) = 0, so lim
x→0

g(x) = 0, and g admits an extension by

continuity on R given by
∼
g = 0.

• If n ≥ 1, we use the Newton binomial formula

(1 + x)n =
n∑
k=0

Ck
nx

k 1n−k = 1 + C1
nx+ C2

nx
2 + · · ·+ Cn

nx
n.
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such that Ck
n =

n!

k!(n− k)!
, C1

n = n, C2
n =

n(n− 1)

n
, · · · , Cn

n = 1.

So g(x) =
1

x
[C1

nx+ C2
nx

2 + · · ·+ Cn
nx

n] = C1
n+C2

nx+ · · ·+Cn
nx

n−1, and

lim
x→0

g(x) = C1
n = n (exist), then g admits extension by continuity on R

given by:

∼
g(x) =


g(x) =

n∑
k=1

Ck
nx

k−1 : x 6= 0

n : x = 0

Exercise 7:

1. Let p > 0 such that ∀x ∈ R, f(x+ p) = f(x). By induction we can show

∀n ∈ N : ∀x ∈ R f(x+ np) = f(x).

since f is not constant, then ∃ a, b ∈ R such that f(a) 6= f(b). We denote

xn = a+np and yn = b+np, assume that f has a limit in +∞, since xn −→∞

then f(xn) −→ l, but f(xn) = f(a+ np) = f(a), so l = f(a).

Likewise with the sequence (yn), yn −→ ∞ then f(yn) −→ l, and f(yn) =

f(b+ np) = f(b), so l = f(b).

Because f(a) 6= f(b) we get a contradiction.

2. We consider the function g(x) = f(x) − x on [0,+∞[. g is continuous, and

g(0) = f(0) > 0.

lim
x→+∞

g(x) = lim
x→+∞

(f(x)−x) = lim
x→+∞

x

(
f(x)

x
− 1

)
= −∞. (because lim

x→+∞

(
f(x)

x

)
=

a, and a− 1 < 0).

So ∃ b ∈ R∗+ such that g(b) < 0 (also g(x) < 0 if x ≥ b) on [0, b]. We have

g is continuous and g(0) > 0, g(b) < 0, according to the intermediate value

theorem: ∃ x0 ∈ [0, b] such that g(x0) = 0, so f(x0) = x0.


