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Chapter 1
Real-Valued Functions of a Real Variable

1.1 Basics

1.1.1 Definition

Definition 1.1.1. Let D ⊆ R. A function f from D into R is a rule which associates with

each x ∈ D one and only one y ∈ R. We denote

f : D −→ R,

x 7−→ f(x).

D is called the domain of the function. If x ∈ D, then the element y ∈ R which is associated

with x is called the value of f at x or the image of x under f , y is denoted by f(x).

1.1.2 Graph of a function

Definition 1.1.2. Each couple (x, f(x)) corresponds to a point in the xy−plane. The set of

all these points forms a curve called the graph of the function f .

Gf = {(x, y)| x ∈ D, y = f(x)}.
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Figure 1.1: Graph of function f(x) = 1/3x3 − x in interval [−2, 2].

1.1.3 Operations on functions

Arithmetic

Let f, g : D −→ R be tow functions, then:

1. (f ± g)(x) = f(x)± g(x), ∀x ∈ D,

2. (f.g)(x) = f(x).g(x), ∀x ∈ D,

3. 0.9
(

f
g

)
(x) = f(x)

g(x) , g(x) 6= 0, ∀x ∈ D,

4. (λ.f)(x) = λ.f(x), ∀x ∈ D, λ ∈ R.

Composition

Let f : D −→ R and let g : E −→ R, if f(D) ⊆ E, then g composed with f is the function

g ◦ f : D −→ R defined by g ◦ f = g[f(x)].

Restriction

We say that g is a restriction of the function f if:

g(x) = f(x) and D(g) ⊆ D(f).

Example 1.1.3. f(x) = ln |x|, and g(x) = ln x, ∀x ∈]0,+∞[: g(x) = f(x), and D(g) ⊆

D(f).
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1.1.4 Bounded functions

Definition 1.1.4. Let f : D −→ R be a function, then:

• We say that f is bounded from below on its domain D(f) if

∀x ∈ D(f), ∃ m ∈ R : m ≤ f(x).

• We say that f is bounded from above on its domain D(f) if

∀x ∈ D(f), ∃ M ∈ R : f(x) ≥M .

• Function is bounded if it is bounded from below and above.

Definition 1.1.5. Let f, g : D −→ R be two functions, then:

• f ≥ g si ∀x ∈ D : f(x) ≥ g(x).

• f ≥ 0 si ∀x ∈ D : f(x) ≥ 0.

• f > 0 si ∀x ∈ D : f(x) > 0.

• f is said to be constant over D if ∃a ∈ R, ∀x ∈ D : f(x) = a.

• f is said to be zero over D if ∀x ∈ D : f(x) = 0.

1.1.5 Monotone functions

Definition 1.1.6. Consider f : D(f) ⊆ R −→ R. For all x, y ∈ D, we have:

• f is increasing ( or strictly increasing) over D if: x ≤ y ⇒ f(x) ≤ f(y), (or

x < y ⇒ f(x) < f(y)).

• f is decreasing ( or strictly decreasing) over D if: x ≤ y ⇒ f(x) ≥ f(y), (or

x < y ⇒ f(x) > f(y)).
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• f is monotone (or strictly monotone) over D if f is increasing or decreasing (strictly

increasing or strictly decreasing).

Proposition 1.1.7. A sum of two increasing (decreasing) functions is an increasing (decreas-

ing) function.

Proof 1.1.8. By induction on N ≥ 1, for any reals a1, a2, · · · , aN , b1, b2, · · · , bN with

ai < b1 for all i = 1, · · · , N , we have:

N∑
i=1
ai <

N∑
i=1
bi.

Assume first that the fi are all monotone increasing (and that this means strictly). In any case

we assume that they’re all "the same kind of monotone".

Given reals x, y with x < y, letting ai = fi(x), and bi = fi(y), we have ai < bi for all i, so:

g(x) =
N∑

i=1
ai <

N∑
i=1
bi = g(y),

so g is monotone increasing too. Similarly if the fi are monotone decreasing.

Corollary 1.1.9. If f is strictly monotone on D, then f is injective.

Indeed:

x 6= y

x < y

 =⇒


f(x) < f(y)

or

f(x) > f(y)

 =⇒ f(x) 6= f(y).

Example 1.1.10. Consider the function f = 2x+ 1. We have

∀ x, y ∈ R, x < y =⇒ 2x < 2y =⇒ 2x+ 1 < 2y + 1 =⇒ f(x) < f(y)

so f is strictly increasing then f is injective.
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1.1.6 Even and odd functions

Definition 1.1.11. • We say that function f : D(f) −→ R is even if

∀x ∈ D(f) : f(−x) = f(x).

• We say that function f : D(f) −→ R is odd if

∀x ∈ D(f) : f(−x) = −f(x).

Remark 1.1.12. 1. Graph of an even function is symmetric with, respect to the y axis.

2. Graph of an odd function is symmetric with, respect to the origin.

3. Domain of an even or odd function is always symmetric with respect to the origin.

1.1.7 Periodic functions

Definition 1.1.13. A function f : D(f) −→ R is called periodic if ∃ T ∈ R∗+ such that:

1. x ∈ D(f)⇒ x± T ∈ D(f),

2. x ∈ D(f) : f(x± T ) = f(x).

Number T is called a period of f .
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1.2 Limits of Functions

1.2.1 Definition

Definition 1.2.1. A set U ⊂ R is a neighborhood of a point x ∈ R if:

]x− δ, x+ δ[⊂ U ,

for some δ > 0. The open interval ]x− δ, x+ δ[ is called a δ−neighborhood of x.

Example 1.2.2. If a < x < b then the closed interval [a, b] is a neighborhood of x, since it

contains the interval ]x− δ, x+ δ[ for sufficiently small δ > 0. On the other hand, [a, b] is not

a neighborhood of the endpoints a, b since no open interval about a or b is contained in [a, b].

Definition 1.2.3. Let f be a function defined in the neighborhood of x0 except perhaps at x0.

A number l ∈ R is the limit of f at x0 if:

∀ε > 0, ∃ δ > 0, ∀x 6= x0 : |x− x0| < δ ⇒ |f(x)− l| < ε.

Notation: limx→x0 f(x) = l.

Example 1.2.4. Let

f : R −→ R

x −→ 5x− 3

Show that limx→1 f(x) = 2.

By definition: ∀ε > 0, ∃ δ > 0, ∀x 6= 1 : |x− 1| < δ ⇒ |f(x)− l| < ε. So we have:

∀ε > 0, |5x− 3− 2| < ε⇒ |5x− 5| < ε⇒ 5 |x− 1| < ε.

Then: |x− 1| < 0.9 ε
5 , so ∃ δ = 0.9 ε

5 > 0 such that limx→1 f(x) = 2.
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1.2.2 Right and left limits

Definition 1.2.5. Let f be a function defined in the neighborhood of x0.

• We say that f has a limit l to the right of x0 if:

∀ε > 0, ∃ δ > 0, ∀x0 < x < x0 + δ ⇒ |f(x)− l| < ε.

We write limx→x+
0
f(x) = lim

x
>−→x0

f(x) = l.

• We say that f has a limit l to the left of x0 if:

∀ε > 0, ∃ δ > 0, ∀x0 − δ < x < x0 ⇒ |f(x)− l| < ε.

We write limx→x−0
f(x) = lim

x
<−→x0

f(x) = l.

• If f admits a limit at the point x0 then:

limx→x0 f(x) = limx→x+
0
f(x) = limx→x−0

f(x) = l.

Example 1.2.6. Consider the integer part function at the point x = 2.

Figure 1.2: Graph of function f(x) = E(x).

• Since x ∈]2, 3[, we have: E(x) = 2, and limx→2+ E(x) = 2.

• Since x ∈]1, 2[, we have: E(x) = 1, and limx→2− E(x) = 1.
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Since these two limits are different, we deduce that the function f(x) = E(x) has no limit at

x = 2.

Theorem 1.2.7. If limx→x0 f(x) exists, then it is unique. That is, f can have only one limit

at x0.

Proof 1.2.8. We assume that f has two different limits at point x0; l and l′ (l 6= l′). We have

lim
x→x0

f(x) = l ⇐⇒ ∀ε > 0, ∃ δ1 > 0, ∀ x 6= x0, |x− x0| < δ1 =⇒ |f(x)− l| < ε

2
lim

x→x0
f(x) = l′ ⇐⇒ ∀ε > 0, ∃ δ2 > 0, ∀ x 6= x0, |x− x0| < δ2 =⇒ |f(x)− l′| < ε

2
We pose δ = min(δ1, δ2), and ε < |l − l′|, then

∀ ε > 0, ∃ δ > 0, ∀ x 6= x0, |x− x0| < δ =⇒



|f(x)− l| < ε

2
and

|f(x)− l′| < ε

2
we have

|l − l′| = |l − l′ + f(x)− f(x)|

≤ |f(x)− l|+ |f(x)− l′|

≤ ε

2 + ε

2 = ε

.

Hence the contradiction with ε < |l − l′|. So l = l′.

Proposition 1.2.9. If limx→x0 f(x) = l, and limx→x0 g(x) = l′, l, l′ ∈ R, then:

1. limx→x0(λ.f)(x) = λ. limx→x0 f(x) = λ.l, ∀λ ∈ R.

2. limx→x0(f + g)(x) = l + l′, and limx→x0(f × g)(x) = l × l′.

3. If l 6= 0, then limx→x0

(
0.9 1

f(x)

)
= 0.91

l
.

4. limx→x0 g ◦ f = l′.

5. limx→x0

(
0.9f(x)

g(x)

)
= 0.9 l

l′
, l′ 6= 0.

6. limx→x0 |f(x)| = |l|.

10



Real-Valued Functions of a Real Variable Y.Chellouf

7. If f ≤ g, then l ≤ l′.

8. If f(x) ≤ g(x) ≤ h(x), and limx→x0 f(x) = limx→x0 h(x) = l ∈ R, then limx→x0 g(x) = l.

1.2.3 Relationship with limits of sequences

Let f : D ⊂ R −→ R, and x0 ∈ R so we have:

lim
x→x0

f(x) = l⇐⇒ ∀ a sequence (xn) of D, xn 6= x0, and lim
n→∞

xn = x0 =⇒ lim
n→∞

f(xn) = l.

1.2.4 Infinite limits

Definition 1.2.10. (Limits as x −→ ±∞)

• limx→+∞ f(x) = l⇔ ∀ε > 0, ∃ A > 0, ∀x ∈ R : x > A⇒ |f(x)− l| < ε.

• limx→−∞ f(x) = l⇔ ∀ε > 0, ∃ A > 0, ∀x ∈ R : x < −A⇒ |f(x)− l| < ε.

• limx→+∞ f(x) = +∞ (resp: limx→+∞ f(x) = −∞) ⇔ ∀A > 0, ∃ B > 0, ∀x ∈ R : x >

B ⇒ f(x) > A, (resp: ∀A > 0, ∃ B > 0, ∀x ∈ R : x > B ⇒ f(x) < −A).

• limx→−∞ f(x) = +∞ (resp: limx→−∞ f(x) = −∞) ⇔ ∀A > 0, ∃ B > 0, ∀x ∈ R : x <

−B ⇒ f(x) > A, (resp: ∀A > 0, ∃ B > 0, ∀x ∈ R : x < −B ⇒ f(x) < −A).

1.2.5 Indeterminate forms

When the limits are not finite, the previous results remain true whenever the operations on the

limits make sense.

In the case where we cannot calculate, we say that we are in the presence of an indeterminate

form. If x −→ x0.

1. f(x) −→ +∞ and g(x) −→ −∞ then f + g is in the indeterminate form +∞−∞.

2. f(x) −→ 0 and g(x) −→ then f

g
is in the indeterminate form 0

0 .
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3. f(x) −→∞ and g(x) −→∞ then f

g
is in the indeterminate form ∞

∞
.

4. f(x) −→∞ and g(x) −→ 0 then f × g is in the indeterminate form ∞× 0.

There are other cases of indeterminate forms of type: 1∞, 0∞, ∞0.

1.3 Continuous Functions

1.3.1 Continuity at a point

Definition 1.3.1. Let f : I −→ R, where I ⊂ R, and suppose that x0 ∈ I. Then f is

continuous at x0 if:

∀ε > 0, ∃ δ > 0, ∀x ∈ I : |x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

In another word: limx→x0 f(x) = f(x0).

Figure 1.3: For |x− x0| < δ, the graph of f(x) should be within the gray region.

A function f : I −→ R is continuous on a set J ⊂ I if it is continuous at every point in J ,

and continuous if it is continuous at every point of its domain I.

1.3.2 Left and right continuity

Definition 1.3.2. Let f : I −→ R, we say that:

• f is continuous on the right of x0 ∈ I if: lim
x

>−→x0
f(x) = f(x0).

12
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• f is continuous on the left of x0 ∈ I if: lim
x

<−→x0
f(x) = f(x0).

• f is continuous on x0 ∈ I if: lim
x

>−→x0
f(x) = lim

x
<−→x0

f(x) = f(x0).

Example 1.3.3. Let

f : R∗+ −→ R+

x −→ f(x) =
√
x

We show that f is continuous at every point x0 ∈ R∗+, i.e.

∀ε > 0, ∃ δ > 0, ∀x ∈ R∗+ : |x− x0| < δ ⇒ |f(x)− f(x0)| < ε,

then, ∀ε > 0 we have:

|f(x)− f(x0)| < ε ⇒
∣∣∣√x−√x0

∣∣∣ < ε

⇒
∣∣∣0.9 x−x0√

x+√x0

∣∣∣ < ε

⇒ 0.9 |x−x0|√
x−√x0

< ε⇒ |x− x0| < ε
(√

x−√x0
)
.

So ∃ δ = ε
(√

x−√x0
)
such that: |f(x)− f(x0)| < ε, then f is continous at x0.

1.3.3 Properties of continuous functions

Theorem 1.3.4. If f, g : I −→ R are continuous function at x0 ∈ I and k ∈ R, then k.f, f+g,

and f.g are continuous at x0. Moreover, if g(x0) 6= 0 then f/g is continuous at x0.

Theorem 1.3.5. Let f : I −→ R and g : J −→ R where f(I) ⊂ J . If f is continuous at x0 ∈ I

and g is continuous at f(x0) ∈ J , then g ◦ f : I −→ R is continuous at x0.

Proof 1.3.6. Fix ε > 0. Since g is continuous at b = f(x0),

∃ δ > 0, ∀ y ∈ J : |y − b| < δ =⇒ |g(y)− g(b)| < ε.

Fix this δ > 0. From the continuity of f at x0,
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∃ γ > 0, ∀ x ∈ I : |x− x0| < γ =⇒ |f(x)− f(x0)| < δ.

From the above, it follows that

∀ ε > 0, ∃γ > 0, ∀ x ∈ I : |x− x0| < γ =⇒ |g(f(x))− g(f(x0))| < ε.

This proves continuity of g ◦ f at x0.

Proposition 1.3.7. Let f : I −→ R and x0 ∈ I, then:

f is continuous at x0 =⇒ for any sequence (un) that converges to x0, the sequence (f(x0))

converges to f(x0).

1.3.4 Continuous extension to a point

Definition 1.3.8. Let f be a function defined in the neighborhood of x0 except at x0 (x0 /∈ Df),

and limx→x0 f(x) = l. Then the function which is defined by

∼
f =


f(x) : x 6= x0,

l : x = x0.

is continuous at x0.
∼
f is the continuous extension of f at x0.

Example 1.3.9. Show that:

f(x) = 0.9x2+x−6
x2−4 , x 6= 2.

has a continuous extension to x = 2, and find that extension.

Solution:

limx→2 f(x) = 0.9limx→2
x2+x−6

x2−4 = limx→2
(x−2)(x+3)
(x−2)(x+2) = 5

4 , exists. So f has a continuous exten-

sion at x = 2 defined by

∼
f =



0.9x2+x−6
x2−4 : x 6= 2,

0.95
4 : x = 2.
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1.3.5 Discontinuous functions

When f is not continuous at x0, we say f is discontinuous at x0, or that it has a discontinuity

at x0.

We say that the function f is not continuous in the following cases:

1. If f is not defined at x0, then f is discontinuous at x0.

2. If f defined in the neighborhood of x0, then f is discontinuous at x0 if

∃ ε > 0, ∀δ > 0, ∃ x ∈ I : |x− x0| < δ, and |f(x)− f(x0)| ≥ ε.

3. If lim
x

>−→x0
f(x) 6= lim

x
<−→x0

f(x), then f is discontinuous at x0, and x0 is a discontinuous

point of the first kind.

4. If one of the two limits lim
x

>−→x0
f(x), lim

x
<−→x0

f(x) or both limits does not exist or are

not finite, then f is discontinuous at x0, and x0 is a discontinuous point of the second

kind.

5. If lim
x

<−→x0
f(x) = lim

x
>−→x0

f(x) 6= f(x0), then f is discontinuous at x0.

1.3.6 Uniform continuity

Definition 1.3.10. Let f : I −→ R. Then f is uniformly continuous on I if:

∀ε > 0, ∃ δ > 0, ∀x′, x′′ ∈ I : |x′ − x′′| < δ =⇒ |f(x′)− f(x′′)| < ε.

Remark 1.3.11. 1. Uniform continuity is a property of the interval form, whereas continu-

ity can be defined at a point.

2. The number δ does not depend on ε whereas for continuity δ depends on ε and x0.

3. Let f : I −→ R be a function. If f is uniformly continuous, then f is continuous.

Example 1.3.12. f(x) = x and g(x) = sin x are uniformly continuous on R (we find δ = ε).
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1.3.7 The intermediate value theorem

Theorem 1.3.13. Suppose that f : [a, b] −→ R is a continuous function on a closed bounded

interval. Then for every d strictly between f(a) and f(b) there is a point a < c < b such that

f(c) = d.

Corollary 1.3.14. Suppose that f : [a, b] −→ R is a continuous function on a closed bounded

interval. If f(a).f(b) < 0, then there is a point a < c < b such that f(c) = 0.

Corollary 1.3.15. Let f : D −→ R is a continuous function and I ⊆ D is an interval, then

f(I) is an interval.

Theorem 1.3.16. Let I = [a, b] be a closed interval, and f : [a, b] −→ R be a continuous

function. Then f is uniformly continuous.

Theorem 1.3.17. Any continuous function on a closed interval [a, b] is bounded on [a, b], i.e:

sup
[a,b]
|f(x)| < +∞.

Remark 1.3.18. 1. The image by a continuous function of a closed interval of R is a closed

interval.

2. If I is not closed then the interval f(I) is not necessarily of the nature of I. For example:

f(x) = x2, then f(]− 1, 1[) = [0, 1[.

16
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1.3.8 Fixed point theorem

Definition 1.3.19. Let f : I −→ I and let .
x ∈ I, we say that .

x ∈ I is a fixed point of f if:

f( .
x) = .

x.

Theorem 1.3.20. Let f : [a, b] −→ [a, b] be a continuous function, then f admits at least one

fixed point in [a, b] i.e: ∃ .
x ∈ [a, b] such that f( .

x) = .
x.

Exercise 1.3.21. Let f be a continuous function on [a, b] and x1, x2, · · · , xn ∈ [a, b]. Prove

that there exists c ∈ [a, b] with

f(c) = f(x1) + f(x2) + · · ·+ f(xn)
n

.

Solution:

Let α = min{f(x) : x ∈ [a, b]}, and β = max{f(x) : x ∈ [a, b]}. Then

f(x1) + f(x2) + · · ·+ f(xn)
n

≤ nβ

n
= β.

Similarly,

f(x1) + f(x2) + · · ·+ f(xn)
n

≥ α.

Then the conclusion follows from the Intermediate Value Theorem.

Exercise 1.3.22. Consider k distinct points x1, x2, · · · , xk ∈ R, k ≥ 1. Find a function

defined on R that is continuous at each xi, i = 1, · · · , k and discontinuous at all other points.

Solution: Consider

f(x) =


(x− a1)(x− a2) · · · (x− ak), if x ∈ Q,

0, if x ∈ Qc.
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