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CHAPTER 1

STABILITY OF ONE-DIMENSIONAL

MAPS AND TWO-DIMENSIONAL

MAPS

EXERCISE 1

Let F(x) = x2. Compute the first five points on the orbit of 1/2.

SOLUTION

Let F(z) = x2. Compute the first five points on the orbit of 1/2. (Nole how these fractions visually trace

out a parabolal) It appears that

Fn
(1

2

)
=

1
22

in general, and this can be proved by induction (see Exercise 5).

EXERCISE 2

Let F(x) = x2 + 1. Coupute the first five polints on the orbit of 0 .

3



SOLUTION

Let F(x) = x2 + 1. Compute the first five points on the orbit of 0 .

F1(0) = F(0) = 1

F2(0) = F(1) = 2

F3(0) = F(2) = 5

F−1(0) = F(5) = 26

F5(0) = F(26) = 677

EXERCISE 3

Let F(x) = x2
− 2 Courpute F2(x) and F3(x).

SOLUTION

Let F(x) = x2
− 2. Compute F2(x) and F3(x).

The second iterate of F is

F2(x) = F(F(x)) =
(
x2
− 2

)2
− 2 = x4

− 4x2 + 2

while the third iterate is given by

F3(x) = F
(
F2(z)

)
= F

(
x4
− 4x2 + 2

)
=

(
x4
− 4x2 + 2

)2
− 2

= x4
− 8x4 + 20x4

− 16x2 + 2.

F4 is a lengthy 16 h-degree polynomial with nine terms. It appears that Fn is a 2n th degree polynomial

with
(
2n−1 + 1

)
terms. What patterns do you see in the iterates of F ?

EXERCISE 4

Let S(x) = sin(2x). Coupute S2(x),Sa(x), and S4(x).
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EXERCISE 5

Let F(x) = x2. Coumpute F2(x),F3(x), and F4(x). What is the formula for Fn(x) ?

SOLUTION

5. Let F(x) = x2, Compute F2(x),F3(x), and F4(x). What is the formula for Fn(x) ?

We have that

F2(x) = F(F(x)) = F
(
x2

)
=

(
x2

)2
= x4

and

F3(x) = F
(
F2(x)

)
= F

(
x4

)
=

(
z4

)2
= x8.

We also have

F4(x) = F
(
F3(x)

)
= F

(
x8

)
=

(
x8

)2
= x16.

In general, it appears that

F′′(x) = x2n
(1.1)

which we will now show by induction (see Exercise 1 for a special case). We’ve already werified that 1.1

holds for n = 1, 2, 3, and 4 , and so the bsse case of the inductive argument has been established. Now,

suppose that the equation is true for n := k. Then

Fk+1(x) = F
(
Fk(x)

)
= F

(
x2k)

by the inductive hypothesis

=
(
x2k)2

= x2.2k

= x2k+1

which proves that (3.1) holds for all n. Note how this argument mirrors the above computations of

F2(x),F3(x), and F4(x), by the way.

EXERCISE 6

Let A(x) = |x|. Counpute A2(x) and A3(x).
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solution

Let A(x) = |x|. Compute A2(x) and A3(x).

By definition,

A(x) = |x| =

 x if x ≥ 0

−x if x < 0
,

and so A(x) ≥ 0 for all x (see Figure 1.1). We also have that

A2(x) = A(A(x)) = |A(x)| = A(x)

since A(x) ≥ 0. Similarly,

A3(x) = A
(
A2

))
= A(A(x)) = |A(x)| = A(x),

and in fact,

An(x) = A(x)

for n ≥ 1. (Can you prove this by induction?) What does this mean? It implies that A has no periodic

points of prime period n > 1.

6



Figure 1.1: The absolute value function A(x) = |x|.

EXERCISE 7

Find all real fixed points (if any) for each of the following functions a. F(x) = 3x + 2

b. F(x) = x2
− 2

c. F(x) = x2 + 1

d. F(x) = x3
− 3x

e. F(x) = |x|

f. F(x) = x5

g. F(x) = x6

h. F(x) = x sin x

solution

Find all real fixed points (if any) for each of the following functions:

7a

F(x) = 3x + 2 3x + 2 = x⇒ 2x = −2⇒ x = −1, therefore, f ixF = −1
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Figure 1.2: The graph of F(x) = x2 + 1 is a parabola with no fixed points.

7b

F(x) = x2
− 2

x2
− 2 = x⇒ x2

− x − 2 = 0. Applying the quadratic formula to this second degree equation, we get

x =
1 ±

√
1 − 4(1)(−2)

2
=

1 ±
√

9
2

,

and therefore, f ixF = {−1, 2}.

7c

F(x) = x2 + 1 (see Figure 1.2) x2 + 1 = x⇒ x2
− x + 1 = 0. Again applying the quadratic formula we get

x =
1 ±

√
1 − 4(1)(1)

2
=

1 ±
√

3i
2

.

In this case, the fixed points are complex and the reader is referred to Chapter 15 rebort for details

concerning complex functions.
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7d

F(x) = x3
− 3x (see Figure 1.3)

x3
−3x = x⇒ x3

−4x = 0⇒ x
(
x2
− 4

)
= 0⇒ x = 0 or x = ±2. Consequently, f ixF = {0,+2}. Consequently,

f ixF = {0,±2}

7e

F(x) = |x| (see Figure 1.2)

Since |x| = x for nonnegative x, we have that f ixF = {x | x ≥ 0}.

Figure 1.3: The graph of the cubic equation P(x) = x3
− 3x.

7f

F(x) = x5

x5 = x⇒ x5
− x = 0⇒ x

(
x4
− 1

)
= 0 which has the fairly obvious solutions x = 0 and x = ±1. But there

are also two other (complex) solutions. Can you find them?

7g

F(x) = x6

x6 = x⇒ x6
− x = 0⇒ x

(
x5
− 1

)
= 0 which has solutions x = 0 and x = 1, and four others which are not
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so easy to find (see Chapter 15) Note: The solutions to xn
− 1 = 0 are called the nth roots of unity.

7h

F(x) = x sin x

Observe that x sin x = x ⇒ 0 = x − x sin x = x(1 − sin x). Thus, x = 0 or 1 − sin x = 0. Now, sin x = 1 if

x = π/2 or any 2π-multiple of π/2. Thus,

f ix F =
{
. . . ,

π
2
− 4π,

π
2
− 2π,

π
2
,
π
2

+ 2π,
π
2

+ 4π, . . .
}
∪ {0}

=
{
. . . ,
−7π

2
,
−3π

2
,
π
2
,

5π
2
,

9π
2
, . . .

}
∪ {0}

= {(4k + 1)π/2 | k ∈ Z} ∪ {0}.

Note: F is an even function, that is, F(x) = F(−x) for all x. See Figure 1.4.

Figure 1.4: The graph of the cubic equation F(x) = x sin x.

EXERCISE 8

8. What are the eventually fiwed points for A(x) = |x| ?

solution

What are the eventually fixed points for A(x) = |x| ?

As shown above in Exercise 7e, f ixA = {x | x ≥ 0}. But fixed point are eventually fixed with preperiod

0 .
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The negative real numbers are also eventually fixed since each becomes positive after just one iteration.

Thus, all real numbers are eventually fixed under iteration of A. We write

fix A = R

Lo denote this fact.

EXERCISE 9

Let F(x) = 1 = x2. Show that 0 lies ou a 2 − cycle for this function.

solution

Let F(x) = 1 − x2. Show that 0 lies on a 2 − cycle for this function.

This is most certainly true since F(0) = 1 and F(1) = 0.

EXERCISE 10

Consider the function F(x) = |x − 2|.

a. What are the fixed points for F?

b. If m is an odd integer, what can you say about the orbit of m?

c. What happens to the orbit if m is even?

solution

Consider the function

F(x) = |x − 2| =

 x − 2 if x ≥ 2

2 − x if x < 2
.

See Figure 1.5 for the graph of F

10a

What are the fixed points for F ?

If x ≥ 2, then |x − 2| = x⇒ x − 2 = x, which has no solution.

On the other hand, if x < 2, we have that |x − 2| = x⇒ 2 − x = x⇒ 2 = 2x⇒ x = 1. Therefore, f ixF = {1}
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Figure 1.5: The graph of the F(x) = |x − 2|.

10b

If x is an odd integer, what can you say about the orbit of x ?

Observe that if x is an odd integer, then so is x − 2.

Now, suppose x is an odd positive integer greater than 2

. Then x − 2 is an odd positive integer smaller than x, and repeated subtraction eventually produces a

value of 1 which is fixed by F. In other words, all odd positive integers are eventually fixed.

But what about odd negative x ? Well, since F(x) ≥ 0 for all z, all we need to do is apply this very same

argument to F(x).

10c

What happens to the orbit if x is even?

Suppose x is an even positive integer greater than or equal to 2 . Then x − 2 is an even positive integer

smaller than z.

In this case, repeated subtractions eventually vanish, but F(0) = |0 − 2| = 2.

And since F(2) = 0, we see that the orbit period 2. Similar arguments hold for even negative x

The following four exercises deal with the doubling function D

EXERCISE 12

Does the function F(x) = −x3 have a cycle of prime porbod 2?
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solution

Give an explicit formula for D2(x) and D3(x). Can you write down a general formula for Dn(x) ? Recall

that the doubling function D is given by the equations

D(x) = 2x mod 1

=

 2x if 0 ≤ x < 1/2

2x − 1 if 1/2 ≤ x < 1
.

See Figure 1.6 for the graph of D. To derive a formula for D2(x), we partition the interval [0, 1) into four

Figure 1.6: The doubling map D(x) = 2x mod 1.

parts and compute the image of each of these subintervals under D2.

0 ≤ x < 1/4 ⇒ 0 ≤ D(x) < 1/2 ⇒ D2(x) = D(D(x))

= D(2x)

= 2(2x)

= 2(2x)

= 4x
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1/4 ≤ x < 1/2 ⇒ 1/2 ≤ D(x) < 1 ⇒ D2(x) = D(D(x))

= D(2x)

= D(2x)

= 2(2x) − 1

= 2(2x) − 1

= 4x − 1

1/2 ≤ x < 3/4 ⇒ 0 ≤ D(x) < 1/2 ⇒ D2(x) = D(D(x))

= D(2x − 1)

= 2(2x − 1)

= 2(2x − 1)

= 4x − 2

3/4 ≤ x < 1 ⇒ 1/2 ≤ D(x) < 1 ⇒ D2(x) = D(D(x))

= D(2x − 1)

= 2(2x − 1) − 1

= 4x − 3

Thus, we have shown that

D2(x) =



4x if 0 ≤ x < 1/4

4x − 1 if 1/4 ≤ x < 1/2

4x − 2 if 1/2 ≤ x < 3/4

4x − 3 if 3/4 ≤ x < 1

.

(See Figure 1.7 7a for the graph of D2.) An expression for D3(z) is derived similarly, but this time we

partition [0, 1) into eight subintervals. The first couple of steps in the computation of D3(x) are given
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below.

0 ≤ x < 1/8 ⇒ 0 ≤ D(x) < 1/4 and 0 ≤ D2(x) < 1/2

⇒ D3(x) = D
(
D2(x)

= D(4x)

= 2(4x)

= 8x

1/8 ≤ x < 1/4⇒ 1/4 ≤ D(x) < 1/2 and 1/2 ≤ D2(x) < 1

⇒ D3(x) = D
(
D2(x)

)
= D(4x)

= 2(4x) − 1

= 8x − 1

Can you predict the outcome? The reader is encouraged to complete the remaining six cases. When

the dust clears, you should get

D3(x) =



8x if 0 ≤ x < 1/8

8x − 1 if 1/8 ≤ x < 1/4

8x − 2 if 1/4 ≤ x < 3/8

8x − 3 if 3/8 ≤ x < 1/2

8x − 4 if 1/2 ≤ x < 5/8

8x − 5 if 5/8 ≤ x < 3/4

8x − 6 if 3/4 ≤ x < 7/8

8x − 7 if 7/8 ≤ x < 1

.

(See Figure 1.7 7 b for the graph of D3.) Observe the pattern in the expressions for D2(x) and D3(x), and
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then try to write down a comparabl expression for Dn(x). You’ll find that

Dn(x) =



2nx if 0 ≤ x < 1/2n

2nx − 1 if 1/2n
≤ x < 2/2n

2nx − 2 if 2/2n
≤ x < 3/2n

...
...

2nx − (2n
− 1) if (2n

− 1) /2n
≤ x < 1

Putting it more succinctly,

Dn(x) = 2nx − k if k/2n
≤ x < (k + 1)/2n
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Figure 1.7: The second and third iterates of the doubling map.

for k = 0, 1, . . . , 2n
− 1. This is precisely the meaning of the abbreviated notation

Dn(x) = 2nx mod 1,

by the way

EXERCISE 13

Consider the map f (x) = sinx, x ∈ R. Discuss the stability character of the fixed point x = 0 of the map.

SOLUTION

The derivative of f (x) is f ′(x) = cos(x) cos x. Since | f ′(0)| = |cos(0)| = 1 we cannot apply linear stability

analysis to determine the stability of the fixed point origin. We construct the cobweb diagram as shown

in 1.8.

1.8 Cobweb diagram of f (x) = sin(x) depicting the stability character of the fixed point origin

The figure shows that the iterated points move toward the fixed point origin. So the origin is stable.

EXERCISE 14

Consider the map f (x) = 1− λx2, where −1 ≤ x ≤ 1 and 0 ≤ λ ≤ 2. Find all fixed points of the map. Also

determine their stability characters.
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Figure 1.8: Cobweb diagram of f (x) = sin(x) depicting the stability character of the fixed point origin

SOLUTION

The fixed points of f (x) are the solutions of the equation f (x) = x. This gives

1 − λx2 = x⇒ λx2 + x − 1 = 0⇒ x =
−1 ±

√
1 + 4λ

2λ
.

Therefore,

x∗1 =
−1 +

√
1 + 4λ

2λ
and x∗2 =

−1 −
√

1 + 4λ
2λ

are two fixed points of f . Now, f ′(x) = −2λ. Since
∣∣∣∣ f ′ (x∗2)∣∣∣∣ = (1 +

√
1 + 4λ) > 1∀λ ∈ [0, 2], the fixed point

x∗2 is unstable for all λ ∈ [0, 2]. Again,
∣∣∣∣ f ′ (x∗1)∣∣∣∣ = (

√
1 + 4λ − 1). Therefore,

∣∣∣∣ f ′ (x∗1)∣∣∣∣ < 1 if
√

1 + 4λ − 1 < 1,

that is, if λ < 3/4. So, the fixed point x1 is stable if 0 < λ < 3/4. And
∣∣∣∣ f ′ (x∗1)∣∣∣∣ > 1 if

√
1 + 4λ − 1 > 1, that

is, if λ > 3/4. Hence x∗1 is unstable if λ > 3/4.

EXERCISE 15

Find the fixed points of the one-dimensional map f (x) = x+sin x, x ∈ R. Also find the basins of attraction.
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SOLUTION

The fixed points of f satisfy

f (x) = x⇒ x + sin x = x⇒ sin x = 0⇒ x = nπ,n = 0,±1,±2, . . .

Figure 1.9: Baxins of attraction of f (x) = x + sin x

So, the fixed points of the given map are x∗ = nπ,n = 0,±1,±2, . . .Now, the derivative f ′(x) = 1+cos x.

So,

f ′(nπ) = 1 + cos(nπ) =

 2, for n = 2m

0, for n = 2m + 1
,m = 0,±1,±2, . . .

Therefore, f ′(0) = 2, f ′(π) = 0, f ′(2π) = 2. This shows that x∗ = π is an attracting fixed point, while

x∗ = 0, 2π are repelling fixed points. So the basin of attraction of π is Wx(π) = (0, 2π). Similarly, the

basin of attraction of 3π is Ws(3π) = (2π, 4π). In general, we get
∣∣∣ f ′(2mπ)

∣∣∣ = 2 > 1 and | f ′((2m + 1)

π) |= 0 < 1, 2mπ,m ∈ Z are repelling fixed points, while (2m + 1)π are attracting fixed points. The basins

of attraction of the fixed points (2m + 1)π are 1.9

Wx((2m + 1)π) = (2mπ, (2m + 2)π),m ∈ Z.

EXERCISE 16

Consider the map xx+1 = f (x∗), where f (x) = 1 − x2, x ∈ [−1, 1]. Find all the periodic 2-cycles of f .

SOLUTION

The fixed points of f are given by

x = f (x) = 1 − x2
⇒ x2 + x − 1 = 0⇒ x = (−1 ±

√

5)/2.

We denote x∗1 = (−1 +
√

5)/2 and x2 = (−1 −
√

5)/2. The point x2 lies outside the domain of f . Now,

for periodic 2 cycles we see f 2(x) = f ( f (x)) = f
(
1 − x2

)
= 1 −

(
1 − x2

)2
= 2x2

− x4. For periodic 2-cycles,
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we have f 2(x) = x. This gives

2x2
− x4 = x⇒ x4

− 2x2 + x = 0⇒ x(x − 1)
(
x2 + x − 1

)
= 0

⇒ x = 0, 1, (−1 ±
√

5)/2.

So the fixed points of f 2(x) are x = 0, 1, (−1±
√

5)/2. But (−1±
√

5)/2 are the fixed points of f . Again,

f (0) = 1, f (1) = 0 and f 2(0) = 0, f 2(1) = 1. This shows that the set {0, 1} forms the period 2-cycle of the

map f .

EXERCISE 17

Find the period of the point 1
8 (5 +

√
5) for the map f (x) = 4x(1− x), x ∈ [0, 1]. Also determine its stability.

SOLUTION

Given map is f (x) = 4x(1 − x), x ∈ [0, 1]. This is a quadratic map. Now,

f
(1

8
(5 +

√

5)
)

= 4 ·
1
8

(5 +
√

5) ·
(
1 −

1
8

(5 +
√

5)
)

=
1

16
(5 +

√

5)(3 −
√

5) =
1
8

(5 −
√

5),

f
(1

8
(5 −

√

5)
)

= 4 ·
1
8

(5 −
√

5) ·
(
1 −

1
8

(5 −
√

5)
)

=
1
16

(5 −
√

5)(3 +
√

5) =
1
8

(5 +
√

5)

Again, f 2
(1

8
(5 +

√

5)
)

= f
(

f
(1

8
(5 +

√

5)
))

= f
(1

8
(5 −

√

5)
)

=
1
8

(5 +
√

5).

Again, f 2
(

1
8 (5 +

√
5)

)
= f

(
f
(

1
8 (5 +

√
5)

))
= f

(
1
8 (5 −

√
5)

)
= 1

8 (5 +
√

5). This shows that the point

(5 +
√

5)/8 is a fixed point of the map f 2 and hence it is a periodic point of period-2 of the given map.

We shall now examine the stability of this periodic-2 point. We have

f 2(x) = f ( f (x)) = f (4x(1 − x)) = 4 · 4x(1 − x){1 − 4x(1 − x)}

= 16x − 80x2 + 128x3
− 64x4.

We shall use the derivative test for finding the stability character of the periodic point of the map.

We see that
(

f 2
)′

(x) = 16 − 160x + 384x2
− 256x3. Since

∣∣∣∣∣( f 2
)′ (1

8
(5 +

√

5)
)∣∣∣∣∣ = 16(244 + 105

√

5) > 1,

the periodic-2 point (5 +
√

5)/8 of f is unstable. Stability of Periodic Cycles Stability of periodic cycles

is a collective property. Let {x1, x2, . . . , x4} be a periodic n-cycle of a map f : R → R. As per definition

of periodic cycle each xi(i = 1, 2, . . . ,n) is a fixed point of the map f n. The cycle is stable (respectively

unstable) if and only if the points xi(i = 1, 2, . . . ,n) are stable (respectively unstable) fixed points of the
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map f n(x). Using the chain rule of differentiation of the composition map f ′′ (xi), we get

(
f n)′ (xi) =

(
f n−1

)′ (
f (xi)

)
f ′ (xi) =

(
f n−1

)′
(xi+1) f ′ (xi)

=
(

f n−2
)′ (

f (xi+1)
)

f ′ (xi+1) f ′ (xi)

=
(

f n−2
)′

(xi+2) f ′ (xi+1) f ′ (xi)

= · · · = f ′ (xi+∞−1) f ′ (xi+n−2) · · · f ′ (xi+1) f ′ (xi)

= f ′ (x1) f ′ (x2) · · · f ′ (xx−1) f ′ (xn)
[

Since {x1, x2, . . . , x−} is a cycle of f
]

Now if xi is a stable fixed point of f n(x), then from linear stability analysis
∣∣∣( f n)′ (x1)

∣∣∣ < 1. This implies

that
∣∣∣ f ′ (x1) f ′ (x2) · · · f ′ (x4)

∣∣∣ < 1. Similarly, if x1 is an unstable fixed point of f n, then
∣∣∣ f ′ (x1) f ′ (x2) · · · f ′ (xs)

∣∣∣ >
1. Hence we have the following definition:

The cycle is said to be stable (sink or atrracting) if f ′ (x1) f ′ (x2) · · · f ′ (xa) |< 1 and it is unstable (source

or repelling) if
∣∣∣ f ′ (x1) f ′ (x2) · · · f ′ (xn)

∣∣∣ > 1. But these criteria are weak in nature.

EXERCISE 18

Find all fixed points of f (x) = x2
− 1, x ∈ R. Determine their stabilities. Show that {0,−1} is a periodic

orbit of period-2. Are the periodic cycle attracting?

SOLUTION

The fixed points of f are given by

x = f (x) = x2
− 1⇒ x2

− x − 1 = 0⇒ x =
1 ±
√

5
2

.

So, the fixed points of the map are
(

1+
√

5
2

)
and

(
1−
√

5
2

)
. Now, f ′(x) = 2x. Since f ′

(
1+
√

5
2

)
= 2

(
1+
√

5
2

)
=

(1+
√

5) > 1 and f ′
(

1−
√

5
2

)
= 2

(
1−
√

5
2

)
= (1−

√
5) < 1, both the fixed points are unstable. For periodic orbit,

we find f (0) = −1, f (−1) = 0, f 2(0) = f ( f (0)) = f (−1) = 0 and f 2(−1) = f ( f (−1)) = f (0) = −1.

This shows that {0,−1} is a periodic orbit of period-2 of the map f . Since
∣∣∣ f ′(0) f ′(−1)

∣∣∣ = |0.(−2)| = 0 < 1,

the cycle is stable.

EXERCISE 19

Consider the map Q(x) = x2
− 0.85 defined on the interval [−2, 2]. Find the 2-cycles and determine their

stability.
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SOLUTION

Observe that Q2(x) =
(
x2
− 0.85

)2
− 0.85. The 2-periodic points are obtained by solving the equation

Q2(x) = x, or x4
− 1.7x2

− x − 0.1275 = 0.

This equation has four roots, two of which are fixed points of the map Q(x). These two fixed points

are the roots of the equation

x2
− x − 0.85 = 0.

To eliminate these fixed points of Q(x) from (1.6.2) we divide the left-hand side of (1.6.2) by the

left-hand side of (1.6.3) to obtain the second-degree equation

x2 + x + 0.15 = 0.

The 2-periodic points are now obtained by solving (1.6.4). They are given by

a =
−1 +

√
0.4

2
, b =

−1 −
√

0.4
2

.

To check the stability of the cycle {a, b}we apply Theorem 1.21. Now,

|Q′(a)Q′(b)| = |(−1 +
√

0.4)(−1 −
√

0.4)| = 0.6 < 1.

Hence by Theorem 1.21, part (i), the 2-cycle is asymptotically stable.

EXERCISE 20

Show that {−1, 1} is an attracting 2 -cycle of the map f (x) = −x1/3, x ∈ R. Find the stability character of

the fixed points of f.

SOLUTION

Here f (x) = −x1/3, x ∈ R. We see that f (−1) = −(−1)1/3 = −(−1) = 1, f (1) = −(1)1/3 = −1, f 2(−1) =

f ( f (−1)) =

f (1) = −1, f 2(1) = f ( f (1)) = f (−1) = 1

The points {−1, 1} form a cycle. Again we see that.

f 3(−1) = f
(

f 2(−1)
)

= f (−1) = 1, f 3(1) = f
(

f 2(1)
)

= f (1) = −1.
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This shows that {−1, 1} is a 2-cycle of the map f . We shall use the derivative test for stability character

of the cycle. The derivative of f gives

f ′(x) = −
1
3

x−(2/3) = −
1

3x(2/3)

∴ f ′(−1) = −
1
3

and f ′(1) = −
1
3

The cycle {−1, 1}will be linearly stable if
∣∣∣ f ′(−1) f ′(1)

∣∣∣ < 1. Since
∣∣∣ f ′(−1) f ′(1)

∣∣∣ =
∣∣∣∣(− 1

3

) (
−

1
3

)∣∣∣∣ = 1
9 < 1, so

the 2 -cycle {−1, 1} is stable. We now find the fixed points of the map. The fixed points are obtained by

solving the equation

f (x) = x⇒ −x1/3 = x⇒ −x = x3
⇒ x3 + x = 0⇒ x

(
x2 + 1

)
= 0

⇒ x = 0(∵ x ∈ R)

So, x∗ = 0 is the only fixed point of the map f . Since
∣∣∣ f ′(x)

∣∣∣ > 1 in the neighborhood of the fixed point

0 , the fixed point origin is repelling.

EXERCISE 21

Consider the map f (x) = −x3, x ∈ R. Show that the origin is an attracting fixed point and {−1, 1} is a

repelling 2 -cycle of the map.

SOLUTION

Solution The fixed points of the map f are given by

x = f (x) = −x3

⇒ x3 + x = 0

⇒ x
(
x2 + 1

)
= 0

⇒ x = 0.

So the origin is the only fixed point of f . Now f ′(x) = −3x2. Since f ′(0) = 0 < 1, the fixed point

origin is stable. Again, f (1) = −1, f (−1) = 1. Now f 2(x) = f ( f (x)) = −
(
−x3

)3
= x9, f 3(x) = −x27 and

f 4(x) = x81. Therefore, f 2(1) = 1, f 2(−1) = −1, f 3(1) = −1 and f 3(−1) = 1, f 4(1) = 1 and

f 4(−1) = −1. This shows that {−1, 1} is a periodic 2 -cycle. The stability condition of the cycle gives that∣∣∣ f ′(−1) f ′(1)
∣∣∣ = |(−3)(−3)| = 9 > 1. Hence {−1, 1} is a repelling 2 -cycle.
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EXERCISE 22

Show that the map f (x) = − 3
2 x2 + 5

2 x + 1, x ∈ R has a 3-cycle. Comment about the stability of the cycle.

SOLUTION

Take three points 0,1 , and 2 . We see that

f (0) = 1, f (1) = −
3
2

+
5
2

+ 1 = 2,

f (2) = −
3
2

(4) +
5
2

(2) + 1 = −6 + 5 + 1 = 0

So f (0) = 1, f (1) = 2, f (2) = 0. And f 2(0) = f ( f (0)) = f (1) = 2, f 2(1) = f ( f (1)) = f , 29, f 2(2) =

f ( f (2)) = f (0) = 1 f 3(0) = f
(

f 2(0)
)

= f (2) = 0, f 3(1) = f
(

f 2(1)
)

= f (0) = 1, f 3(2) = f
(

f 2(2)
)

= f (1) = 2.

The three points 0,1 , and 2 are fixed points of f 3. Also, f 4(0) = f
(

f 3(0)
)

= f (0) = 1, f 4(1) = f
(

f 3(1)
)

= f (1)

= 2, f 4(2) = f
(

f 3(2)
)

= f (2) = 0.

This shows that {0, 1, 2} is a periodic 3 cycle of the map f . We shall test the stability of the 3-

cycle using derivative test. This gives the condition
∣∣∣ f ′(0) f ′(1) f ′(2)

∣∣∣ < 1. Now, f ′(x) = −3x + 5
2 . So,

f ′(0) = 5
2 , f ′(1) = −3 + 5

2 = − 1
2 , f ′(2) = −6 + 5

2 = − 7
2 . Since

∣∣∣ f ′(0) f ′(1) f ′(2)
∣∣∣ =

∣∣∣∣ 5
2

(
−

1
2

) (
−

7
2

)∣∣∣∣ = 35
8 > 1, the

cycle {0, 1, 2} is unstable.

EXERCISE 23

Find all periodic two orbits of the quadratic map f (x) = 4.x(1− x), x ∈ [0, 1]. Show that they are unstable.

SOLUTION

It can be easily shown that the fixed points of f 2(x), where f (x) = r(1 − x), x ∈ [0, 1] are

x∗ = 0,
(
1 −

1
r

)
, p, q

where p =
r+1+
√

(r+1)(r−3)
2r and q =

r+1−
√

(r+1)(r−3)
2r . But x∗ = 0,

(
1 − 1

r

)
are the fixed points of f (x) = r(1 − x).

Here r = 4. So

p =
4 + 1 +

√
(4 + 1)(4 − 3)
24

=
5 +
√

5
8

and q =
5 −
√

5
8

. Now

f (p) = 4p(1 − p) = 4
(

5 +
√

5
8

) (
1 −

5 +
√

5
8

)
=

5 +
√

5
2

·
3 −
√

5
8

=
5 −
√

5
8

= q.
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That is, f (p) = q. Similarly, f (q) = p. Thus we get f (p) = q, f (q) = p and f 2(p) = p and f 2(q) = q. Therefore

the periodic-2 cycle of f is {p, q}, i.e.,
{

5+
√

5
8 , 5−

√
5

8

}
. Here f ′(x) = 4 − 8x. So,

f ′(p) = 4 − 8p = 4 − 8
(

5 +
√

5
8

)
= −(1 +

√

5) and

f ′(q) = 4 − 8q = 4 − 8
(

5 −
√

5
8

)
= −(1 −

√

5).

The derivative test of the cycle {p, q} gives
∣∣∣ f ′(p) f ′(q)

∣∣∣ =| (1 +
√

5) (1 −
√

5) |= 4 > 1. Hence the cycle

{(5 +
√

5)/8, (5 −
√

5)/8} is unstable.

EXERCISE 24

Find the source and sink of the map f (x) = x2 .

SOLUTION

consider the map f (x) = x2. The fixed points of the map are x∗ = 0, 1. Since
∣∣∣ f ′(0)

∣∣∣ = 0 , 1 and∣∣∣ f ′(1)
∣∣∣ = 2 , 1, the fixed points x∗ = 0, 1 are hyperbolic. Hyperbolic Periodic Point Let p be a periodic

point of period n of a map f : R → R. Then p is said to be hyperbolic periodic point if
∣∣∣( f n)′ (p)

∣∣∣ , 1.

Let f (x) = −
(
x + x3

)
/2, x ∈ R. Clearly, the points ±1 are periodic-2 points of f . Now, we see that∣∣∣∣( f 2

)′
(±1)

∣∣∣∣ = 4 , 1. Hence the periodic points ±1 are hyperbolic.

EXERCISE 25

Find the source and sink of the map f (x) = −
(
x2 + x

)
/2, x ∈ R. Show that they are hyperbolic in nature.

SOLUTION

The fixed points of the map f are given by f (x) = x. Therefore, the fixed points are given by x∗ = 0,−3.

Now, f ′(x) = −(2x+1)/2 and the derivatives of f (x) at the points 0 and -3 are f ′(0) = −1/2 and f ′(−3) = 5/2,

respectively. Since
∣∣∣ f ′(0)

∣∣∣ = 1/2 < 1, the fixed point x = 0 is stable (sink). Again,
∣∣∣ f ′(−3)

∣∣∣ = 5/2 > 1, the

fixed point x = −3 is unstable (source). We see that
∣∣∣ f ′(x)

∣∣∣ , 1 for both the fixed points. This implies

that the source at x = −3 and the sink at x = 0 are hyperbolic in nature. These fixed points are known as

hyperbolic source and hyperbolic sink under the flow f .
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EXERCISE 26

determine the stability of the fixed point origin of the maps (i) f (x) = sin x, x ∈ R, (ii) f (x) = x3
−x2 +x, x ∈

R.

SOLUTION

(i) Here f (x) = sin x, x ∈ R. Clearly, the origin is a fixed point of the map. Now, f ′(x) = cos x, f ′′(x) =

− sin x, f ′′(x) = − cos x. Therefore, f ′(0) = cos 0 = 1. Also, the third derivative is continuous and

f ′′′(0) = − cos 0 = −1 , 0. Since f ′′(0) = − sin 0 = 0 and f ′′′(0) = −1 < 0, by Theorem 9.6 , the origin

is asymptotically stable. (ii) Here f (x) = x3
− x2 + x. Clearly, the origin is a fixed point of f . Now,

f ′(x) = 3x2
− 2x, f ′′(x) = 6x and f ′′′(x) = 6. Here f ′′(x) is continuous and f ′′′(0) , 0. Since f ′′(0) = 0 and

f ′′(0) = 6 > 0, by Theorem 9.6 , the origin is unstable.

EXERCISE 27

determine the stability of the fixed point origin of the maps f (x) =
(
3x − x3

)
/2, x ∈ R.

SOLUTION

Consider the map f (x) =
(
3x − x3

)
/2, x ∈ R. The fixed points of f are given by

f (x) = x⇒
(
3x − x3

)
/2 = x⇒ x = −1, 0, 1.

The derivative of f (x) is f ′(x) = 3
(
1 − x2

)
/2. Since f ′(±1) = 0, the fixed points x = ±1 are superstable.

EXERCISE 28

determine the stability of the fixed point origin of the maps f (x) = rx(1 − x), x ∈ [0, 1], r ≥ 0.

SOLUTION

Here f ′(x) = r(1− 2x). In this context we define an important map, the unimodal map. It is a very simple

nonlinear map with a single point of extremum. The map f (x) is unimodal. For superstable 1-cycle, we

must have f ′(x) = 0. This gives x = 1/2. However, 1 -cycles are the fixed points of the map. So f (x) = x at

x = 1/2. This yields the parameter value r = 2. Thus a superstable 1 -cycle of f (x) = rx(1− x) exists when

r = 2 and the cycle contains only the point x = 1/2. For superstable 2-cycle {p, q} we have the condition
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f ′(p) f ′(q) = 0. This shows that x = 1/2 must be an element of the 2 -cycle. Since every element of the 2

-cycle of f (x) is a fixed point of f 2(x), x = 1/2 is a fixed point of f 2(x). By solving the equation f 2(x) = x

for x = 1/2 we get three values of r, namely r = 2, (1−
√

5), (1 +
√

5). But r = 2 corresponds to superstable

1-cycle of f and r = (1−
√

5) is negative. So for superstable 2-cycle we must have r = (1 +
√

5). With this

value of r the superstable 2 -cycle is given by
{

1
2 ,

1+
√

5
4

}
.

EXERCISE 29

determine the nature of the fixed point origin of the maps f (x) = sin x, x ∈ R

SOLUTION

A fixed point x∗ of a map f : R → R is said to be non-hyperbolic if
∣∣∣ f ′ (x∗)∣∣∣ = 1. Thus, for a non-

hyperbolic fixed point x∗ either f ′ (x∗) = 1 or f ′ (x∗) = −1. . Here x∗ = 0 is a fixed point of f . Since

f ′ (x∗) = cos (x∗) = cos 0 = 1, the fixed point x∗ = 0 is non-hyperbolic. Similarly, x = 0 is a non-hyperbolic

fixed point of the map 1(x) = tan x.

It is very difficult to say whether a non-hyperbolic fixed point is attracting or repelling. In this

situation we use cobweb diagram to analyze the nature of the fixed point. We can also determine the

stability of a non-hyperbolic fixed point

EXERCISE 30

Determine the stability behavior of the non-hyperbolic fixed points of the quadratic map Q(x) = ax2 +

bx + c, a , 0.

SOLUTION

The fixed points x∗ of Q(x) satisfy Q (x∗) = x∗. This yields two fixed points x∗
±

=
−(b−1)±

√
(b−1)2−4ax

2a . If

x∗ is non-hyperbolic, then either Q′ (x∗) = 1 or Q′ (x∗) = −1 (i) Let Q′ (x∗) = 1. Then 2ax∗ + b = 1.

This gives the fixed point x∗ = (1 − b)/2a and it exists when (b − 1)2
− 4ac = 0, that is, (b − 1)2 = 4ac

Since Q′′ (x∗) = 2a > 0, from Theorem 9.6 it follows that the fixed point x∗ = (1 − b)/2a is semi-stable.

(ii) Let Q′ (x∗) = −1. Then 2ax∗ + b = −1. This gives the fixed point x∗ = −(b + 1)/2a and it exists when

−(b−1)±
√

(b − 1)2 − 4ac = −(b+1), that is, when (b−1)2 = 4(ac+1) Calculate Q′′ (x∗) = 2a and Q′′′ (x∗) = 0.

Since SQ (x∗) = −6a2 < 0,so the non-hyperbolic fixed point x∗ = −(b + 1)/2a is asymptotically stable.
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EXERCISE 31

Determine the stability of the fixed point origin of the function f (x) = − sin x.

SOLUTION

Clearly, x = 0 is a fixed point f . We calculate f (x) = − cos x, f ′′(x) = sin x and f ′′′(x) = cos x. Obviously,

f ′(x) is continuous and f ′(0) = −1. The Schwarzian derivative of f at the origin is given by

S f (0) =
f ′′′(0)
f ′(0)

−
3
2

(
f ′′(0)
f ′(0)

)2

=
1

(−1)
−

3
2

(
0

(−1)

)2

= −1 < 0.

This shows that the origin is asymptotically stable.

EXERCISE 32

Study the tent function in a comprehensive and complete study

SOLUTION

Figure 1.10: Graphical representation of T (x) depicting the fixed points x∗ = 0 and x∗ = 2/3

segments of different slopes meet. The tent map has some interesting properties that we explore
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below. Generally, the tent map T : [0, 1]→ [0, 1] is defined as

T(x) =


2λx, 0 ≤ x ≤ 1/2

2λ(1 − x), 1/2 ≤ x ≤ 1
(20.1)

where λ(0 ≤ λ ≤ 1) is a control parameter. We can also write the tent map by an iterative sequence as

follows:

xn+1 = f (xn) = λ
(
1 − 2

∣∣∣∣∣xn −
1
2

∣∣∣∣∣)
As we know that a fixed point is an invariant solution of a map, the nature of the fixed points plays

an important role in analyzing the dynamical behavior of the map.we shall analyze the fixed points of

the tent map for the parameter value λ = 1. The fixed points satisfy the relation x = T(x). So, we get

x = 2x ⇒ x = 0 ∈ [0, 1/2] and x = 2(1 − x) ⇒ x = 2/3 ∈ [1/2, 1]. Thus, the only two fixed points of the

tent map are x∗ = 0 and x∗ = 2/3. The graphical representation of T(x) is shown in 1.10.

The map T2(x) :

Using the definition of T(x), the twofold composition of the tent map can be obtained as follows:

T2(x) = T(T(x)) =



2(2x), 0 ≤ 2x ≤ 1/2

2(1 − 2x), 1/2 ≤ 2x ≤ 1

2 · 2(1 − x), 0 ≤ 2(1 − x) ≤ 1/2

2(1 − 2(1 − x)), 1/2 ≤ 2(1 − x) ≤ 1

=



4x, 0 ≤ x ≤ 1/4

2 − 4x, 1/4 ≤ x ≤ 1/2

−2 + 4x, 1/2 ≤ x ≤ 3/4

4 − 4x, 3/4 ≤ x ≤ 1

For determining the fixed points of T2(x), we have to solve the equation x = T2(x). Now,

for 0 ≤ x ≤
1
4
, x = T2(x)⇒ x = 4x⇒ x = 0

for
1
4
≤ x ≤

1
2
, x = T2(x)⇒ x = 2 − 4x⇒ x =

2
5

for
1
2
≤ x ≤

3
4
, x = T2(x)⇒ x = −2 + 4x⇒ x =

2
3

for
3
4
≤ x ≤ 1, x = T2(x)⇒ x = 4 − 4x⇒ x =

4
5

Therefore, the fixed points of T2(x) are given by x∗ = 0, 2
5 ,

2
3 ,

4
5 . The diagrammatic representation of
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T2(x) displaying the fixed points is presented in figure 1.10.

figure 1.11 The twofold composition T2(x) depicting four fixed points

Figure 1.11: the twofold composition T2(x) depicting four fixed points

The Map T3(x)

Using T(x) and the twofold composition T2(x), we can show the representation of T3(x) as follows:

T3(x) =



8x, 0 ≤ x ≤ 1
8

2 − 8x, 1
8 ≤ x ≤ 1

4

−2 + 8x, 1
4 ≤ x ≤ 3

8

4 − 8x, 3
8 ≤ x ≤ 1

2

−4 + 8x, 1
2 ≤ x ≤ 5

8

6 − 8x, 5
8 ≤ x ≤ 3

4

−6 + 8x, 3
4 ≤ x ≤ 7

8

8 − 8x, 7
8 ≤ x ≤ 1

and its fixed point calculated as x∗ = 0, 2
3 ,

2
7 ,

4
7 ,

6
7 ,

2
9 ,

4
9 ,

8
9 . The graphical representation of T3(x) dis-

playing the fixed points is presented in Figure 1.12.

Periodic Orbits of the Tent Map

Q1: The set of points
{

2
5 ,

4
5

}
forms a periodic-2 cycle of the tent map.

Solution: We show that one orbit of the tent map is 2
5 ,

4
5 ,

2
5 ,

4
5 , . . ., that is, an orbit which repeats itself

exactly every second iteration. Now,
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Figure 1.12: Graphical representation of T3(x)

T(x) =


2x, 0 ≤ x ≤ 1

2

2(1 − x) 1
2 ≤ x ≤ 1

Since 2
5 ∈

[
0, 1

2

]
,T

(
2
5

)
= 2

(
2
5

)
= 4

5 . Similarly, T
(

4
5

)
= 2

(
1 − 4

5

)
= 2

5 .

Also, T2
(

2
5

)
= T

(
T
(

2
5

))
= T

(
4
5

)
= 2

5 and T2
(

4
5

)
= T

(
T
(

4
5

))
= T

(
2
5

)
= 4

5 .

Therefore, T
(

2
5

)
= 4

5 ,T
(

4
5

)
= 2

5 ,T
2
(

2
5

)
= 2

5 and T2
(

4
5

)
= 4

5 .

This shows that
{

2
5 ,

4
5

}
forms a periodic-2 cycle of the tent map T. The derivative test, gives the

stability behavior of the cycle. Now,
∣∣∣∣T′ ( 2

5

)
T′

(
4
5

)∣∣∣∣ = 4 > 1. Hence the periodic-2 cycle is unstable.

Q2 The cycles
{

2
7 ,

4
7 ,

6
7

}
and

{
2
9 ,

4
9 ,

8
9

}
form two periodic- 3 cycles of the tent map.

Solution We shall show that the points
{

2
7 ,

4
7 ,

6
7

}
and

{
2
9 ,

4
9 ,

8
9

}
repeat itself every third iterations. Now,

T
(2

7

)
= 2 ·

2
7

=
4
7
,T

(4
7

)
= 2

(
1 −

4
7

)
=

6
7
, and T

(6
7

)
= 2

(
1 −

6
7

)
=

2
7

T2
(2

7

)
= T

(
T
(2

7

))
= T

(4
7

)
=

6
7

T2
(4

7

)
= T

(
T
(4

7

))
= T

(6
7

)
=

2
7

and T2
(6

7

)
= T

(
T
(6

7

))
= T

(2
7

)
=

4
7

Again, T3
(

2
7

)
= T

(
T2

(
2
7

))
= T

(
6
7

)
= 2

7 . Similarly, T3
(

4
7

)
= 4

7 and T3
(

6
7

)
= 6

7

This shows that
{

2
7 ,

4
7 ,

6
7

}
forms a periodic- 3 cycle of T. In the similar manner we can prove that

{
2
9 ,

4
9 ,

8
9

}
also forms a periodic-3 cycle of the tent map. The derivative test for 3-cycle gives

∣∣∣∣T′ ( 2
7

)
T′

(
4
7

)
T′

(
6
7

)∣∣∣∣ =

23 > 1. Similarly, the derivative test for the other cycle gives that value 23. So, both the cycles are

unstable.
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Periodic cycles of Tn(x)

From the above analysis, it can be shown easily that the n-fold composition, Tn(x), of T(x) has 2n fixed

points. For n = 1, there are two period-1 orbits, x∗0 = 0 and x∗1 = 2/3. In each fold of compositions there is

a fixed point x∗0 = 0.T2(x) has four fixed points, of which two are new, x∗ = 2/5, 4/5. But the new pair of

fixed points
{

2
5 ,

4
5

}
forms a period-2 orbit of the map. T3(x) has eight fixed points, among which two fixed

points x∗0 = 0 and x∗1 = 2/3 belong to n = 1 and the other fixed points, viz.,
{

2
9 ,

4
9 ,

8
9

}
and

{
2
7 ,

4
7 ,

6
7

}
form two

period-3 orbits of the tent map. T4(x) has 24 fixed points, among which two belong to n = 1 and another

two belong to n = 2. So, the other 12 fixed points of T4(x) must form three distinct period-4 orbits. In

general, Tn(x) has 2n fixed points and we see from above analyses that there is at least one period-n orbit

with the points
{

2
2n+1 ,

22

2n+1 ,
23

2n+1 , . . . ,
2n

2n+1

}
(Davies [1]). So, there are periodic orbits of every period. Note

that none of these periodic cycles contain the points 0, 1/2 and 1 , where the derivatives of the map are

not defined. The derivative test can be applied to these cycles for their stability analyses. These

give T′ (x∗) = ±2, (Tn)′ (x∗) = ±2n
⇒

∣∣∣(Tn)′ (x∗)
∣∣∣ = 2n > 1. This implies that all cycles are unstable in nature.

In other words, we can say that infinitely many unstable periodic orbits can exist for the tent map.

EXERCISE 33

Study The Quadratic Map Qc(x) = x2 + c, x ∈ R in a comprehensive and complete study

SOLUTION

The family of quadratic map is often denoted by Qc and is defined by Qc(x) = x2 + c, x ∈ R.

where c ∈ R is a parameter. This map is called the Myrbrg family of maps on R as the domain. Myrbrg

was one of the first to study this map extensively, see [5, 6]. The study of dynamics of Qc with varying c

is interesting and we shall discuss it below. First we calculate the fixed points of the quadratic map.

Fixed points: The fixed points of Qc are simply the roots of the quadratic equation Qc(x) − x ≡

x2 + c − x = 0.

This yields two fixed points

x∗+ =
1
2

(1 +
√

1 − 4c)

and

x∗− =
1
2

(1 −
√

1 − 4c)

. Note that the points x∗
±

depend on the parameter c. Furthermore, they are real if and only if c ≤ 1/4.

So, the fixed points of Qc exist only when c ≤ 1/4. At c = 1/4, x∗+ = x∗
−

= 1/2. No fixed points will appear

when c > 1/4. Figure ?? depicts the three cases.
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Figure 1.13: Quadratic map for a c < 1/4,bc = 1/4, and cc > 1/4

Stabilities of the fixed points are determined by the derivative condition Q′c
(
x∗
±

)
= 1 ±

√
1 − 4c. Note

that Q′c
(
x∗+

)
> 1 when c < 1/4 and Qc

(
x∗+

)
= 1 at c = 1/4. Hence the fixed point x∗+ is repelling when

c < 1/4 and it is neutral when c = 1/4. At x∗
−
,Q′c

(
x∗
−

)
= 1 when c = 1/4 and Q′c

(
x∗
−

)
< 1 for c slightly

below 1/4. We now see that
∣∣∣Q′c (x∗−)∣∣∣ < 1 if and only if −3/4 < c < 1/4. At c = −3/4,Q′c

(
x∗
−

)
= −1

and Q′c
(
x∗
−

)
< −1 when c < −3/4. Therefore, the fixed point x∗

−
is attracting when −3/4 < c < 1/4 and

repelling when c < −3/4. At c = 1/4,−3/4, the stability test fails. Using the cobweb diagram, the fixed

point x∗+ = x∗
−

= 1/2 at c = 1/4 is semi-stable. Similarly, at c = −3/4, the fixed point x∗
−

is stable while the

fixed point x∗+ is unstable. Figure ?? displays the stability characters of the fixed points for c = 1/4,−3/4.

Figure 1.14: Stability characters of the fixed points at a c = 1/4 and bc = −3/4

Periodic points: The period-1 points of Qc are the fixed points of the map. The period-2 points of Qc

are the fixed points of the map Q2
c and are the roots of the equation

f (x) ≡ Q2
c (x) − x = x4 + 2cx2

− x + c2 + c = 0.

Since the fixed points of Qc are also the fixed points of Q2
c ,

(
x2
− x + c

)
is a factor of the polynomial f (x).

Dividing f (x) by this factor, we get the other factor as
(
x2 + x + c + 1

)
. The solutions p, q =

−1±
√
−(4c+3)
2 of

the equation x2 + x + c + 1 = 0 yield the other two fixed points of Q2
c . Note that the points p, q exist only

when c ≤ −3/4, they collide at (−1/2) when c = −3/4. Now, calculate

Qc(p) = p2 + c =
1
4

(1 − 2
√

−4c − 3 − 3 − 4c) + c

=
−1 −

√
−(4c + 3)
2

= q,
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and

Qc(q) = q2 + c =

−1 −
√
−(4c + 3)
2

2

+ c

=
−1 +

√
−(4c + 3)
2

= p.

This shows that {p, q} forms a period-2 cycle of Qc(x). Stability of this cycle is determined by the

derivative condition of the cycle Q′c(p)Q′c(q) = 4pq = 4(c + 1). Therefore,
∣∣∣Q′c(p)Q′c(q)

∣∣∣ < 1 when −1 < 4(c +

1) < 1, that is, when−5/4 < c < − 3/4. Similarly,
∣∣∣Q′c(p)Q′c(q)

∣∣∣ > 1 when c < −5/4 and
∣∣∣Q′c(p)Q′c(q)

∣∣∣ = 1 when

c = −3/4,−5/4. Thus, the period-2 cycle {p, q} of the quadratic map Qc is stable when −5/4 < c < −3/4

and is unstable (repelling) when c < −5/4 figure 1.15.

It can be shown that the quadratic map has two period-3 cycles and they occur at c = −1.75. Figure

1.16 shows two attracting 3 -cycles of the quadratic map at c = −1.77.

Figure 1.15: Period-2 cycle of the quadratic map for c = −0.9

Figure 1.16: Two period-3 cycles of the quadratic map
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EXERCISE 34

Prove that the logistic map L4 is conjugate to G : [−1, 1]→ [−1, 1],

G(x) = 2x2
− 1

SOLUTION

We know that If F(x) = ax2 + bx + c, and G(x) = rx2 + sx + t where a , 0, r , 0 and c = b2
−s2+2s−2b+4rt

4a , then F

and G are linearly conjugate via h(x) = a
r x + b−s

2r .

Now,
L4 = 4x(1 − x) = −4x2 + 4x so, a = −4, b = 4, c = 0, and

G(x) = 2x2
− 1 so, r = 2, s = 0, t = −1, and h(x) = −2x + 1

So it is sufficient to prove that c = b2
−s2+2s−2b+4rt

4a = 0. Which is clear 16 − 0 + 0 − 2(4) + 4(2)(−1) = 0. Thus

L4 ≈ G via h(x) = −2x + 1.

EXERCISE 35

Consider the map Ta(x); a ∈ R and a > 1 that defined as

Ta(x) =

 a(x + 1) for x ≤ 0

a(1 − x) for x > 0

Verify that a period -2 orbit of Ta(x) is given by x1 =
a(1−a)
1+a2 ; x2 =

a(1+a)
1+a2 and determine the stability of

this orbit.

SOLUTION

Since a > 1 we have that x1 < 0, x2 > 0

Ta (x1) = a
[

a(1 − a)
1 + a2 + 1

]
=

a2
− a3 + a + a3

1 + a2 =
a(a + 1)
1 + a2

= x2

=
a − a2

1 + a2 =
a(1 − a)
1 + a2 = x1
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Thus {x1, x2} is z-cycle orbit. Now T′a(x) =


a for x 6 0

−a for x > 0,

∣∣∣T1
a (x1) ·

∣∣∣ x′a) | = |a(−a) |= a2 > 1 ( since a > 1)

Thus, the orbit is unstable .
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CHAPTER 2

BIFURCATIONS IN

ONE-DIMENSIONAL DISCRETE

SYSTEMS

EXERCISE 36

Study the Logistic Map r(x) = r(1 − x) in a comprehensive and complete study

SOLUTION

This map is associated with the logistic pattern of population growth (linear growth model, that is,

r(x) = r(1 − x), a linear decrease of r(x) with increasing population x ) and may be represented by

xn+1 = f (xn) = rxn (1 − xn) (2.1)

which is basically a discrete-time analog of the logistic equation for the population growth model

ẋ = rx(1 − x), x ∈ [0, 1]. Here xn ≥ 0 is a dimensionless measure of the population in the nth generation

and r ≥ 0 is the intrinsic growth rate (population growth parameter). The graph of 2.1 represents a

parabola with a maximum value of (r/4) at x = 1/2. Figure ?? depicts a sketch of f (x) at the parameter

value r = 4.
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Figure 2.1: Sketch of f (x) at the parameter value r = 4

Some Properties of the Logistic Map

Q1 Find all fixed points of the logistic map xn+1 = rxn (1 − xn) for 0 ≤ xn ≤ 1 and 0 ≤ r ≤ 4. Also determine

their stability behaviors.

Solution The logistic map function is given by f (x) = rx(1 − x), 0 ≤ x ≤ 1 and 0 ≤ r ≤ 4. For the fixed

points of f (x), we have a relation

f (x) = x⇒ rx(1 − x) = x⇒ x{(r − 1) − rx} = 0⇒ x = 0,
(
1 −

1
r

)
So, the map has two fixed points, namely x∗0 = 0 and x∗1 =

(
1 − 1

r

)
. Clearly, x∗0 = 0 is a fixed point of

the map f for all values of the parameter r. But x∗1 =
(
1 − 1

r ) is a fixed point of f if r ≥ 1 (since 0 ≤ x ≤ 1

). Therefore, the fixed points of the logistic map are x∗0 = 0∀r ∈ [0, 4] and x∗1 =
(
1 − 1

r

)
for 1 ≤ r ≤ 4. The

stability of the fixed points depends on the absolute value of f ′(x) = r − 2rx. Since
∣∣∣ f ′(0)

∣∣∣ = |r| = r, the

fixed point x∗0 = 0 is stable when r < 1 and unstable when r > 1. Again, since
∣∣∣∣ f ′ (1 − 1

r

)∣∣∣∣ = |2 − r|, the

fixed point x∗1 is stable if |2 − r| < 1, that is, if 1 < r < 3 and unstable if |2 − r| > 1, that is, in the range

3 < r ≤ 4.

Q2 Prove that the logistic map f (x) = rx(1 − x) has a 2-cycle for all r > 3.

Solution

The growth rate parameter r is the deciding factor for the evolution of the logistic map. We now find

periodic-2 orbit for logistic map which depends upon the parameter r. Now, f 2(x) = r f (x){1 − f (x)} =

r2x(1 − x){1 − rx(1 − x)}. For finding fixed points of twofold composition f 2, we get a relation
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f 2(x) = x

or, r2x(1 − x){1 − rx(1 − x)} = x

or, x
[
r2(1 − x){1 − rx(1 − x)} − 1

]
= 0

or, x
[
r2(1 − x) − r3x(1 − x)2

− 1
]

= 0

or, x
[
r2(1 − x) + r3(1 − x − 1)(1 − x)2

− 1
]

= 0

or, x
[
r3(1 − x)3

− r3(1 − x)2 + r2(1 − x) − 1
]

= 0

or, x
{
x −

(
1 −

1
r

)} [
r3(1 − x)2 + r2(1 − r)(1 − x) + r

]
= 0

or, x = 0, 1 −
1
r

and 1 − x =
−r2(1 − r) ±

√
r4(1 − r)2 − 4r4

2r3

=
r − 1 ±

√
(r + 1)(r − 3)
2r

or,

x = 0, 1 −
1
r

and 1 −
r − 1 ±

√
(r + 1)(r − 3)
2r

=
r + 1 ±

√
(r + 1)(r − 3)
2r

= p, q( say )

Therefore, there are four fixed points of f 2, given by x∗ = 0, 1
r , p, q. But the two, x∗ = 0, 1

r , of them are

the fixed points of f (x) and the other two are real only for r ≥ 3. We examine the cycle property of f .

Now,

f (p) = rp(1 − p) = r ·
r + 1 +

√
(r + 1)(r − 3)
2r

1 −
r + 1 +

√
(r + 1)(r − 3)
2r


=

r + 1 +
√

(r + 1)(r − 3)
2

 r − 1 −
√

(r + 1)(r − 3)
2r


=

r2
− {1 +

√
(r + 1)(r − 3)}2

4r

=
r2
− 1 − 2

√
(r + 1)(r − 3) −

(
r2
− 2r − 3

)
4r

=
2r + 2 − 2

√
(r + 1)(r − 3)

4r

=
r + 1 −

√
(r + 1)(r − 3)
2r

= q

⇒ f (p) = q

Similarly, we can show that f (q) = p. Again, f 2(p) = f ( f (p)) = f (q) = p and f 2(q) = f ( f (q)) = f (p) = q.

According to the definition of 2-cycle it is clear that the logistic map f (x) has a periodic-2 orbit or cycle

{p, q} when r > 3. Note that for r < 3 the roots are complex, which means that a cycle does not exist.

Hence a 2-cycle of the logistic map appears when r > 3. The graph of f 2(x) for r > 3 is shown in
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Figure 2.2.

Figure 2.2: 10.5 Graphical representation of the logistic map at the second iteration for r = 3.7

Q3

Explain bifurcation of a system. Show that the logistic map fr(x) = rx(1 − x), x ∈ [0, 1] undergoes a

transcritical bifurcation at r = 1 and a period-doubling bifurcation at r = 3.

Solution

Bifurcation is basically a change in the structure of the orbit as a system parameter (known as control

parameter) varies continuously through critical values. Bifurcation theory is concerned with equilibrium

solutions of system. The characters of the fixed points and the period orbits are altered figure 2.2).

Figure 2.3: Graphical representation of the logistic map for different values of r
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When the parameter is increased, the two fixed points collide, whereupon they exchange their

stabilities. This type of bifurcation is called transcritical bifurcation and this is not a common type of

bifurcation occurred in one-dimensional discrete system. Now, the fixed points of the logistic map f are

given by

x = f (x) = rx(1 − x)⇒ x = 0,
(
1 −

1
r

)
The fixed x = 0 exists for all values of r, whereas the other fixed point x =

(
1 − 1

r

)
exists when r ≥ 1.

So, the fixed points of the logistic map are given by

x∗0 = 0 ∀r ∈ [0, 4] and x∗1 = 1 −
1
r

for 1 ≤ r ≤ 4

As discussed earlier, the fixed point origin is stable when r < 1 and unstable when r > 1. Similarly,

the fixed point x∗1 is stable when 1 < r < 3 and unstable when r > 3. Geometrically, the stability behaviors

can be explained in a better way. We draw the graphs of the logistic map and the line y = x in x − f (x)

plane.

For the parameter value r < 1, the parabola, which represents the logistic map f (x), lies below the

diagonal line y = x and the origin is the only fixed point, and it is stable. With increasing values of r,

say at r = 1, the parabola becomes tangent to the diagonal line y = x. For r > 1, the parabola intersects

the diagonal line at the fixed point x∗1, while the fixed point origin loses its stability. Thus, we see that at

r = 1 the map undergoes a bifurcation resulting a transcritical bifurcations by exchanging stabilities of

the fixed points.

When r increases beyond 1 , the slope of the function f gets increasingly steep and the critical slope

is attained when r = 3 (at r = 3, fixed points are p = q = 2/3 ). This indicates that the logistic map

undergoes another bifurcation leading to period-2 cycle. This bifurcation is known as a period-doubling

bifurcation or a flip bifurcation. The iterates flip from side to side of the fixed point. So, flip bifurcation

is basically a period-doubling bifurcation and occurs at the critical value r = 3 for the logistic map.

Q4

Prove that the period-2 cycle of the logistic map is linearly stable when 3 < r < (1 +
√

6) = 3.449 . . .

Solution

We know that the period 2-cycle of the logistic map is {p, q}, where

p, q =
r + 1 ±

√
(r + 1)(r − 3)
2r

So, p + q = r+1
r and pq =

(r+1)2
−(r+1)(r−3)

4r2 = r+1
r2 .

The derivative of f (x) is given by f ′(x) = r − 2rx. Therefore, f ′(p) = r − 2rp and f ′(q) = r − 2rq. The

linear stability of the 2-cycle {p, q} gives the following condition as
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∣∣∣ f ′(p) f ′(q)
∣∣∣ < 1

⇒ |(r − 2rp)(r − 2rq)| < 1

⇒ r2
|(1 − 2p)(1 − 2q)| < 1

⇒ r2
|1 − 2(p + q) + 4pq| < 1

⇒ r2
∣∣∣∣1 − 2

(
r+1

r

)
+ 4

(
r+1
r2

)∣∣∣∣ < 1

⇒

∣∣∣r2
− 2r(r + 1) + 4(r + 1)

∣∣∣ < 1

⇒

∣∣∣−r2 + 2r + 4
∣∣∣ < 1

⇒

∣∣∣r2
− 2r − 4

∣∣∣ < 1

⇒

∣∣∣(r − 1)2
− 5

∣∣∣ < 1

⇒ −1 < (r − 1)2
− 5 < 1

⇒ 4 < (r − 1)2 < 6

⇒ 2 < (r − 1) <
√

6

⇒ 3 < r < 1 +
√

6.

Hence, the period 2-cycle of the logistic map is linearly stable when 3 < r < (1 +
√

6).

EXERCISE 37

Study the Cubic Map f (x) = rx − x3 in a comprehensive and complete study

SOLUTION

The Cubic Map

A family of one-dimensional cubic maps is defined by f (x) = rx−x3, where r ∈ R is the control parameter.

The dynamics of the cubic maps are more complicated than the quadratic maps. The fixed points of f

are given by x = 0,±
√

(r − 1). Clearly, x = 0 is a fixed point of f for every value of r, but the other two

fixed points, x± = ±
√

(r − 1), exist only when r ≥ 1, and they coincide with x = 0 when r = 1. Figure

10.16 shows the fixed points of the map at r = 2,−1. The fixed points are the intersecting points of the

function f (x) with the diagonal line.

Figure 2.4: Fixed points of the cubic map at at r = 2, br = −1
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A bifurcation may occur at r = 2. We shall now determine the period-2 cycle of f , which are simply

the solutions of the equation 1(x) ≡ f 2(x)−x = r
(
rx − x3

)
−

(
rx − x3

)3
−x = 0. Since the fixed points of f are

also the fixed points of f 2, x3
− (r−1)x must be a factor of the polynomial g(x). On division, we obtain the

other factor as
(
x2
− r − 1

) (
x4
− rx2 + 1

)
and this gives six 2 -cycle points, a± = ±

√
r + 1, b± = ±

√
r+
√

r2−4
2

and c± = ±

√
r
√

r2−4
2 . The points a±exist if r ≥ −1. At r = −1, they coincide with the fixed point x = 0.

The other four points exist when r ≥ 2. We see that f (a+) = r
√

r + 1 − (r + 1)
√

r + 1 = −
√

r + 1 = a−,

f (a−) = −r
√

r + 1 + (r + 1)
√

r + 1 =
√

r + 1 = a+. Thus, {a+, a−}forms a period-2 cycle of the cubic map.

Similarly, it can be shown that the other two period-2 cycles of the cubic map are {b+, c−}and {b−, c−}. To

determine the stability of the 2-cycles, we evaluate
(

f 2
)′

(x) =
(
r − 3x2

) (
r − 3x2

(
r − x2

)2
)
. Using a little

algebraic manipulation, we see that the 2 -cycle {a+, a−}is stable when 1 < r < 2 and the other two 2

-cycles are stable when 2 < r <
√

5.

Hénon Map

This is a two-dimensional map and was first studied by the French astronomer Michel Hénon (1931-2013)

in the year 1976. The Hénon map Hab : R2
→ R2 is defined as

(x, y)→ Ha,b(x, y) =
(
a − x2 + by, x

)
or,

 xn

yn

→
 xn+1 = a − x2

n + byn

yn+1 = xn


where a, b are two real parameters (Fig. 10.22). The Hénon map has a nonlinear term x2. The fixed points

of this map satisfy the following equations:

f (x, y) = (x, y)⇒ a − x2 + by = x and y = x

which is equivalent to

x2
− (b − 1)x − a = 0.

The roots are given by

x =
b − 1 ±

√
(b − 1)2 + 4a
2

.

Clearly, the roots are real if and only if

(b − 1)2 + 4a ≥ 0, that is, 4a ≥ −(b − 1)2.

Hence the Hénon map has fixed points if the relation 4a ≥ −(b−1)2 is satisfied and the fixed points lie

along the diagonal line y = x. When 4a = −(b− 1)2, the map has only one fixed point ((b− 1)/2, (b− 1)/2)
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and when 4a > −(b − 1)2, it has two distinct fixed points (α, α) and (β, β) where

α, β =
b − 1 ±

√
(b − 1)2 + 4a
2

.

For example, if a = 0 and b = 0.4, then the Hénon map has two distinct fixed points (0, 0) and

(−0.6,−0.6). The Jacobian matrix of Ha,b is given by

J(x, y) =

 −2x b

1 0


This gives the eigenvalues

λ = x ±
√

x2 + (b/2)2.

The Jacobian determinant of the Hénon map is constant and it is given by det(J) = −b. Note that

det(J) , 0 if and only if b , 0. Hence the Hénon map is invertible if and only if b , 0 and the inverse is

given by

H−1
a,b =

(
y,

(
x − a + y2

)
/b

)
.

We also see that |det(J)| < 1 if and only if −1 < b < 1. Hence the Hénon map is area-contracting

(a map f (x, y) is said to be area-contracting if |det(J(x, y))| < 1 everywhere) for −1 < b < 1. That is, it

contracts the area of any region in each iteration by a constant factor of |b|.

Period-2 points

For finding period-2 points we have a relation

f 2(x, y) = (x, y)⇒ a −
(
a − x2 + by

)2
+ bx = x and a − x2 + by = y.

Solving the second equation for y, (1 − b)y = a − x2 and then substituting in the first equation, we get

(
x2
− a

)2
+ (1 − b)3x − (1 − b)2a = 0.

By factorization we see that
(
x2 + (1 − b)x − a

)
must be a factor of the equation. On division, we get

the other factor of the equation as
(
x2
− (1 − b)x − a + (1− b)2 ) and the period-2 points are given by the

roots of the equation x2
− (1 − b)x − a + (1 − b)2 = 0, while (1 − b)y = a − x2. The roots are given by

x1, x2 =
1
2

[
(1 − b) ±

√
4a − 3(1 − b)2

]
.

The period two points lie on x + y = 1 − b. It is evident that the Hénon map has a period-2 orbit if

and only if 4a > 3(1 − b)2.
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Figure 2.5: The graphical representations of fλ(x) for aλ < 1 and bλ > 1

EXERCISE 38

Discuss bifurcations and draw bifurcation diagrams for the one-dimensional map f (x, λ) = λ tan−1(x);λ, x ∈

R

SOLUTION

consider the one-dimensional map f (x, λ) = λ tan−1(x);λ, x ∈ R. For λ < 1, fλ(x) = λ tan−1(x) = x⇒

x = 0 is only fixed point since x/ tan−1(x) > 1. Since f ′λ(0) = λ < 1, the fixed point origin is stable. For

λ > 1, fλ(x) = λ tan−1(x) has three fixed points at x = 0, x = x+ > 0 and x = x− < 0. The map fλ(x) has

three points of intersection. Now, fλ (x+) = λ tan−1 (x+) = x+ ⇒ λ = x+

tan−1(x+) . This implies

f ′λ (x+) =
λ

1 + (x+)2 =
x+

1 + (x+)2

1
tan−1 (x+)

< 1.

The fixed point at x+is stable for λ > 1.

Similarly, the fixed point at x = x−is also stable. But the fixed point x = 0 is unstable, since f ′λ(0) = λ > 1.

Thus the map undergoes a bifurcation when the parameter λ crosses the value λ = 1, called bifurcating

point. The graphical representations of fλ(x) for λ < 1 and λ > 1 are shown in Figure 2.5
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