People's Democratic Republic of Algeria

Ministry of Higher Education and scientific Research

University Center abdelhafid boussouf (Alger)

Institute of mathematics and computer sciences

Department of mathematics

Course

DISCRETE DYNAMICAL SYSTEM.

Master 1 (first year) fundamental and applied mathematics

The first semester

By: ROUIBAH KHAOULA

University year: 2023 – 2024

CONTENTS

1	The	e Stability of One-Dimensional Maps	4
	1.1	Maps vs. Difference Equations	4
	1.2	Maps vs. Differential Equations	6
		1.2.1 Euler's Method	6
		1.2.2 Poincaré Map	.0
	1.3	Linear Maps/Difference Equations	.1
	1.4	Fixed (Equilibrium) Points	4
	1.5	Graphical Iteration and Stability 18	.8
	1.6	Criteria for Stability	!1
		1.6.1 Hyperbolic Fixed Points 2	!1
		1.6.2 Nonhyperbolic Fixed Points 24	24
	1.7	Periodic Points and their Stability	9
	1.8	The Period-Doubling Route to Chaos 34	54
		1.8.1 Fixed Points	64
		1.8.2 2-Periodic Cycles	6
		1.8.3 2^2 -Periodic Cycles	8
2	Bifu	urcations in one-dimensional discrete systems 4	1
	2.1	Discrete one-dimensional dynamical systems	1
		2.1.1 Fixed points and their stability 42	2
	2.2	Loss of stability : bifurcation	4
		2.2.1 Saddle-node bifurcation	4
		2.2.2 Pitch-fork bifurcation	5

CONTENTS

	2.3	Periodic points	45			
	2.4	Period doubling Bifurcation	48			
	2.5	Universality and Feigenbaum constants	50			
	2.6	Chaos and other periods	50			
3	Stab	oility of Two-Dimensional Maps	52			
	3.1	Linear Maps vs. Linear Systems	52			
	3.2	Computing A^n	53			
	3.3	Fundamental Set of Solutions	59			
	3.4	Second-Order Difference Equations	62			
	3.5	Phase Space Diagrams	63			
	3.6	Stability Notions	70			
	3.7	Stability of Linear Systems	74			
	3.8	The Trace-Determinant Plane	76			
		3.8.1 Stability Analysis	76			
		3.8.2 Navigating the Trace-Determinant Plane	80			
	3.9	Liapunov Functions for Nonlinear Maps	81			
	3.10	Linear Systems Revisited	88			
	3.11	Stability via Linearization	90			
		3.11.1 The Hartman-Grobman Theorem	95			
		3.11.2 The Stable Manifold Theorem	95			
4	Bifu	urcation and Chaos in Two Dimensions	97			
	4.1	Bifurcation	97			
		4.1.1 Eigenvalues of 1 or -1	97			
		4.1.2 A Pair of Eigenvalues of Modulus 1 - The NeimarkSacker Bifurcation	98			
	4.2	The Hénon Map	102			
Bi	Bibliographie 104					

CHAPTER 1

BIFURCATION AND CHAOS IN TWO DIMENSIONS

1.1 Bifurcation

1.1.1 Eigenvalues of 1 or -1

In this section we focus our attention on the bifurcation of two dimensional maps. The extension to higher dimensions should be apparent to the reader after comprehending the two dimensional case. Let us consider the one-parameter family of maps

$$F(\mu, u): \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R} \tag{1.1}$$

with $u = (x, y) \in \mathbb{R}^2$, $\mu \in \mathbb{R}$ and $F \in C^r$, $r \ge 5$. If (μ^*, u^*) is a fixed point, then we make a change of variables, so that our fixed point is (0, 0). Let $J = D_u F(0, 0)$. Then using the center manifold theorem, we find a onedimensional map $f_{\mu}(u)$ defined on the center manifold M_c . We deduce the following statements: 1. Suppose that *J* has an eigenvalue equal to 1. Then we have

FIGURE 5.3

The occurrence of the three main types of bifurcation.

(a) a saddle-node bifurcation (fold bifurcation), if $\frac{\partial F}{\partial \mu}(0,0) \neq 0$ and $\frac{\partial^2 P}{\partial^2 u}(0,0) \neq 0$ (b) a pitchfork bifurcation, if $\frac{\partial f}{\partial \mu}(0,0) = 0$ and $\frac{\partial^2 f}{\partial^2 \mu}(0,0) = 0$ (c) a transcritical bifurcation, if $\frac{\partial f}{\partial \mu}(0,0) = 0$ and $\frac{\partial^2 f}{\partial^2 \mu}(0,0) \neq 0$.

2. If *J* has an eigenvalue equal to -1 , then we have a period-doubling (flip) bifurcation.

3. If *J* has a pair of complex conjugate eigenvalues of modulus 1, a new type of bifurcation, called the Neimark-Sacker bifurcation appears. The Neimark-Sacker bifurcation will be discussed in more details in the sequel. Let T = tr J, D = det J. Then the following trace-determinant diagram (Fig. 5.3) illustrate the main bifurcation phenomena.

1.1.2 A Pair of Eigenvalues of Modulus 1 - The NeimarkSacker Bifurcation

We now turn our attention to the case when the Jacobian matrix $J = D_u F(u_0, \mu_0)$ has two complex conjugate eigenvalues. Let us start with an illustrative example.

Example 1.1.1 Consider the family of maps

$$F_{\mu} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (1 + \mu - x_1^2 - x_2^2) \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
(1.2)

where $\beta = \beta(\mu)$ is a smooth function of the parameter μ and $0 < \beta(0) < \pi$. Observe that the origin is a fixed point of the map F_{μ} for all μ with the Jacobian matrix

$$J = (1 + \mu) \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$$

The matrix J has eigenvalues $\lambda_{1,2} = (1 + \mu)e^{\pm i\beta}$ with $|\lambda_{1,2}| = |1 + \mu|$. Hence, at $\mu = 0$, the eigenvalues cross the unit circle, a clear sign of the appearance of a Neimark-Sacker bifurcation. Clearly, the origin is asymptotically

stable for $-2 < \mu < 0$. To analyze the bifurcation when $\mu = 0$, it is more convenient to write the map F_{μ} in polar coordinates (r, θ) . To facilitate this change of coordinates, write Equation (4.2) as a two-dimensional system of difference equations:

$$\begin{pmatrix} x_1(n+1) \\ x_2(n+1) \end{pmatrix} = \left(1 + \mu - x_1^2(n) - x_2^2(n)\right)$$

$$\begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} x_1(n) \\ x_2(n) \end{pmatrix}.$$

$$(1.3)$$

Now, putting $x_1(n) = r(n) \cos \theta(n)$, $x_2(n) = r(n) \sin \theta(n)$ in Equation (4.3), we obtain

$$r(n+1) = (1+\mu)r(n) - r^{3}(n)$$

$$\theta(n+1) = \theta(n) + \beta$$
(1.4)

The form of Equation (4.4) enables us to detect easily the presence of an invariant circle by letting $(1 + \mu)r - r^3 = r$. Hence, the invariant circle is of radius $r^* = \sqrt{\mu}$. Thus, this invariant circle appears when μ crosses the value 0 as shown in Fig. 5.4. When $\mu = 0$, the map $r \mapsto r - r^3$ is one-dimensional and its stability can be determined by using the techniques of Chapter 1.

Note also that the cobweb diagram indicates that the origin is (slowly) asymptotically stable (see Fig. 5.5).

Thus, for $\mu = 0$, the origin is asymptotically stable. When μ becomes positive, the origin loses its stability and gives rise to an attracting (asymptotically stable) circle with radius $r = \sqrt{\mu}$. The dynamics on this circle are determined by the map $\theta \mapsto \theta + \beta$, which is a rotation by an angle β in the counterclockwise direction. This phenomenon is called a Neimark-Sacker bifurcation (or a Hopf bifurcation).

FIGURE 5.4

Supercritical Neimark-Sacker bifurcation of the map in (5.18), (a) $\mu < 0,$ (b) $\mu = 0,$ (c) $\mu > 0.$

Remark 1.1.1 An analogous but different scenario may occur if we consider the map

$$\tilde{F}_{\mu} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \left(1 + \mu + x_1^2 + x_2^2 \right) \begin{pmatrix} \cos\beta - \sin\beta \\ \sin\beta\cos\beta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$
(1.5)

This map undergoes a Neimark-Sacker bifurcation at $\mu = 0$ but in a manner different from that of Equation (4.2) (see Fig. 5.6). The reader is asked to provide details in Problem 4.

To this end, we have described in detail the occurrences of the NeimarkSacker bifurcation for the map in Example 4.1.1. In the sequel, we will show that the dynamics of this map are typical for a certain class of two-dimensional maps with one parameter. So, let us consider the family of C^r maps ($r \ge 5$) $F_{\mu} : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$ such that the following conditions hold:

1. $F_{\mu}(0) = 0$, i.e., the origin is a fixed point of F_{μ} .

2. $\underline{D}F_{\mu}(0)$ has two complex conjugate eigenvalues $\lambda(\mu) = r(\mu)e^{i\theta(\mu)}$ and $\overline{\lambda}(\mu)$, where $r(0) = 1, r'(0) \neq 0, \theta(0) = \theta_0$. Thus, $|\lambda(0)| = 1$.

3. $e^{ik\theta_0} \neq 0$ for k = 1, 2, 3, 4, 5, i.e., $\lambda(0)$ is not a low root of unity.

Based on the above assumptions, we make the following claims.

1. By a change of basis in R^2 , we may assume, without loss of generality, that

$$J = DF_{\mu}(0,0) = (1+\mu) \begin{pmatrix} \cos \beta(\mu) & -\sin \beta(\mu) \\ \sin \beta(\mu) & \cos \beta(\mu) \end{pmatrix}.$$

FIGURE 5.6

Supercritical Neimark-Sacker bifurcation of the map in (4.5), (a) $\mu < 0$, (b) $\mu = 0$, (c) $\mu > 0$.

2. From assumption 3, by a change of coordinates, we may assume that our map F_{μ} takes the form

$$F_{\mu} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = N_{\mu} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + O\left(\left| \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right|^5 \right)$$
(1.6)

where

$$N_{\mu} \begin{pmatrix} r \\ \theta \end{pmatrix} = \begin{pmatrix} (1+\mu)r - f(\mu)r^3 \\ \theta + \beta(\mu) + g(\mu)r^2 \end{pmatrix},$$
(1.7)

with $f(0) \neq 0$. Notice that the radius of the invariant circle is given by $r = \sqrt{\mu/f(\mu)}$.

Theorem 1.1.1 (Neimark-Sacker).

Suppose that F_{μ} satisfies assumptions 1-3. Then, for sufficiently small μ , F_{μ} has an invariant closed curve enclosing the origin if $\mu/f(\mu) > 0$. Moreover, if f(0) > 0, this curve is attracting, and if f(0) < 0, it is repelling.

1.2 The Hénon Map

Example 1.2.1 (The Hénon Map).

Consider the Hénon map

$$H_{ab}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}1-ax^2+y\\bx\end{pmatrix}$$

As we have seen in Chapter 4, the Hénon map has two fixed points if $a > -\frac{1}{4}(1-b)^2$. These fixed points are

$$u_1^* = \left(\frac{1}{2a}\left(b - 1 + \sqrt{(1-b)^2 + 4a}\right), \frac{b}{2a}\left(b - 1 + \sqrt{(1-b)^2 + 4a}\right)\right)^T$$
$$u_2^* = \left(\frac{1}{2a}\left(b - 1 - \sqrt{(1-b)^2 + 4a}\right), \frac{b}{2a}\left(b - 1 - \sqrt{(1-b)^2 + 4a}\right)\right)^T$$

Recall that for |b| < 1 and $a \in \left(-\frac{1}{4}(1-b)^2, \frac{3}{4}(1-b)^2\right) = I$, the fixed point u_1^* is asymptotically stable while u_2^* is a saddle. Now at the left end point $a_1 = -\frac{1}{4}(1-b)^2$ of the parameter interval I, we have $u_2^* = u_1^* = \left(\frac{-(1-b)}{2a}, \frac{-b(1-b)}{2a}\right)$. Moreover, the Jacobian matrix $J = D_u H\left(u_1^*, a_1\right) = \begin{pmatrix} 1-b & 1\\ b & 0 \end{pmatrix}$ has an eigenvalue equal to +1. Hence, by the center manifold theorem, there is a saddle node bifurcation at u_1^* .

On the other hand, at the right end point $a_2 = \frac{3}{4}(1-b)^2$ of I, we have $u_1^* = \left(\frac{(1-b)}{2a}, \frac{b(1-b)}{2a}\right)^T$. Furthermore, the Jacobian matrix $J = D_u H\left(u_1^*, a_2\right) = \begin{pmatrix} -(1-b) & 1 \\ b & 0 \end{pmatrix}$ has an eigenvalue equal to -1. Again, by the center manifold theorem, we have a period-doubling bifurcation. For a fixed b, we may plot a bifurcation diagram showing the x components of an orbit and the parameter a on the x axis. Figure 5.16 shows the bifurcation diagram of the Hénon map for $a \in [0, 1.4]$, and b = 0.3. We see a 4-cycle going to a chaotic region and then when a = 2 we have two pieces of a chaotic attractor.

FIGURE 5.16 The bifurcation diagram of the Henon map for a fixed b = 0.3.

BIBLIOGRAPHY

- Abraham. R, Mira. C, Gardini. L, Chaos in discrete dynamical systems, Springer Science-Business Media, New York: Telos, 1997.
- [2] Devaney. R. L, An introduction to chaotic dynamical dystems, CRC Press, third edition, Boca Raton, 2022.
- [3] Elaydi. S, An Introduction to difference equations, 3 edition, Sprigner, San Antonio, 2005.
- [4] Elaydi. S, Discrete chaos:With Applications in Science and Engineering, Second Edition, CRC Press, San Antonio, 2007
- [5] Hirsch. M. W, Smale. S, Devaney. R. L, Differential equations, dynamical systems, and an introduction to chaos, Elsevier, Waltham, 2013.
- [6] Galor. O, Discrete dynamical systems, Springer Science-Business Media, first edition, Berlin, 2007.
- [7] Layek, G. C. An introduction to dynamical systems and chaos, 449, Springer, New Delhi, 2015.
- [8] Lynch. S, Dynamical systems with applications using mathematica, Boston, Birkhuser, 2007.
- [9] Martelli. M, Introduction to discrete dynamical systems and chaos, John Wiley and Sons, Canada, (1999).
- [10] Strogatz. S. H, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, CRC press, Reading Mass 1994.
- [11] Wiggins.S, Introduction to Applied Nonlinear Dynamical Systems and Chaos, second edition, Springer-Verlag, New York, 2000.