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CHAPTER 1

STABILITY OF TWO-DIMENSIONAL

MAPS

1.1 Linear Maps vs. Linear Systems

Recall from linear algebra that a map L : R2
→ R2 is called a linear transformation if

1. L (U1 + U2) = L (U1) + L (U2) for U1,U2 ∈ R2

2. L(αU) = αL(U) for U ∈ R2 and α ∈ R. Moreover, it is always possible to represent f (with a given

basis for R2 ) by a matrix A. A typical example is

L
(
x
y

)
=

(
ax + by
cx + dy

)
which may be written in the form

L
(
x
y

)
=

 a b

c d


(
x
y

)
or

L(U) = AU, (1.1)

where U =

 x

y

 and A =

 a b

c d

.

By iterating L, we conclude that Ln(U) = AnU. Hence, the orbit of U under f is given by

{
U,AU,A2U, . . . ,AnU, . . .

}
(1.2)
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1.2. COMPUTING AN

Thus, to compute the orbit of U, it suffices to compute AnU for n ∈ Z+.

Another way of looking at the same problem is by considering the following two-dimensional system

of difference equations

x(n + 1) = ax(n) + by(n)y(n + 1) = cx(n) + dy(n) (1.3)

or

U(n + 1) = AU(n). (1.4)

By iteration, one may show that the solution of Equation (??) is given by

U(n) = AnU(0). (1.5)

So, if we let U0 = U(0), then Ln (U0) = U(n). The form of Equation (??) is more convenient when we

are considering applications in biology, engineering, economics, and so forth. For example, x(n) and y(n)

may represent the population sizes at time period n of two competitive cooperative species, or preys and

predators.

In the next section, we will develop the necessary machinery to compute An for any matrix of order

two.

1.2 Computing An

Consider a matrix A =
(
ai j

)
of order 2× 2. Then, p(λ) = det(A−λI) is called the characteristic polynomial

of A and its zeros are called the eigenvalues of A. Associated with each eigenvalue λ of A a nonzero

eigenvector V ∈ R2 with AV = λV.

Example 1.2.1 Find the eigenvalues and the eigenvectors of the matrix

A =

 2 3

1 4


SOLUTION First we find the eigenvalues of A by solving the characteristic equation det(A− λI) = 0

or ∣∣∣∣∣∣∣∣ 2 − λ 3

1 4 − λ

∣∣∣∣∣∣∣∣ = 0

which is

λ2
− 6λ + 5 = 0.
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1.2. COMPUTING AN

Hence, λ1 = 1 and λ2 = 5. To find the corresponding eigenvector V1, we solve the vector equation

AV1 = λV1 or (A − λ1I) V1 = 0. For λ1 = 1, we have

 1 3

1 3


(
v11

v21

)
=

(
0
0

)
.

Hence, v11 + 3v21 = 0. Thus, v11 = −3v21. So, if we let v21 = 1, then v11 = −3. It follows that the

eigenvector V1 corresponding to λ1 is given by V1 =

 −3

1

.

For λ2 = 5, the corresponding eigenvector may be found by solving the equation (A − λ2I) V2 = 0.

This yields  −3 3

1 −1


(
v12

v22

)
=

(
0
0

)
.

Thus, −3v12 + 3v22 = 0 or v12 = v22. It is then appropriate to let v12 = v22 = 1 and hence V2 =

 1

1

.

To find the general form for An for a general matrix A is a formidable task even for a 2×2 matrix such

as in Example 3.2.1. Fortunately, however, we may be able to transform a matrix A to another simpler

matrix B whose nth power Bn can easily be computed. The essence of this process is captured in the

following definition.

Definition 1.2.1 The matrices A and B are said to be similar if there exists a nonsingular matrix P such that

P−1AP = B.

We note here that the relation "similarity" between matrices is an equivalence relation, i.e.,

1. A is similar to A.

2. If A is similar to B then B is similar to A.

3. If A is similar to B and B is similar to C, then A is similar to C.

The most important feature of similar matrices, however, is that they possess the same eigenvalues. that det P , 0,

where det denotes determinant.

Theorem 1.2.1 Let A and B be two similar matrices. Then A and B have the same eigenvalues.

Proof. Suppose that P−1AP = B or A = PBP−1. Let λ be an eigenvalue of A and V be the corresponding

eigenvector. Then, λV = AV = PBP−1V. Hence, B
(
P−1V

)
= λ

(
P−1V

)
. Consequently, λ is an eigenvalue

of B with P−1V as the corresponding eigenvector.

The notion of similarity between matrices corresponds to linear conjugacy. In other words, two linear

maps are conjugate if their corresponding matrix representations are similar. Thus, the linear maps L1,L2
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1.2. COMPUTING AN

on R2 are linearly conjugate if there exists an invertible map h such that

L1 ◦ h = h ◦ L2

or

h−1
◦ L1 ◦ h = L2.

The next theorem tells us that there are three simple "canonical" forms for 2 × 2 matrices.

Theorem 1.2.2 Let A be a 2 × 2 real matrix. Then A is similar to one of the following matrices:

1.

 λ1 0

0 λ2


2.

 λ 1

0 λ


3.

 α β

−β α


Proof. Suppose that the eigenvalues λ1 and λ2 are real. Then, we have two cases to consider. The first

case is where λ1 , λ2. In this case, we may easily show that the corresponding eigenvectors V1 and V2

are linearly independent (Problem 10). Hence, the matrix P = (V1,V2), i.e., the matrix P whose columns

are these eigenvectors, is nonsingular. Let P−1AP = J =

 e f

1 h

. Then,

AP = PJ. (1.6)

Comparing both sides of Equation (??), we obtain

AV1 = eV1 + 1V2.

Hence,

λ1V1 = eV1 + 1V2.

Thus, e = λ1 and 1 = 0.

Similarly, one may show that f = 0 and h = λ2. Consequently, J is a diagonal matrix of the form (a).

The second case is where λ1 = λ2 = λ. There are two subcases to consider here. The first subcase

occurs if we are able to find two linearly independent eigenvectors V1 and V2 corresponding to the

eigenvalue λ. This subcase is then reduced to the preceding case. We note here that this scenario

happens when (A − λI)V = 0 for all V ∈ R2. In particular, one may let V1 =

 1

0

 and V2 =

 0

1

, which

are clearly linearly independent.
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1.2. COMPUTING AN

The second subcase occurs when there exists a nonzero vector V2 ∈ R2 such that (A − λI)V2 , 0.

Equivalently, we are able to find only one eigenvector (not counting multiples) V1 with (A − λI)V1 = 0.

In practice, we find V2 by solving the equation

(A − λI)V2 = V1.

The vector V2 is called a generalized eigenvector of A. Note that AV1 = λV1 and AV2 = λV2 + V1.

Now, we let P = (V1,V2) and P−1AP = J. Then,

AP = PJ. (1.7)

Comparing both sides of Equation (??) yields

J =

 λ 1

0 λ

 . (1.8)

The matrix J is in a Jordan form. Next, we assume that A has a complex eigenvalue λ1 = α+ iβ. Since

A is assumed to be real, it follows that the second eigenvalue λ2 is a conjugate of λ1, that is, λ2 = α − iβ.

Let V = V1 + iV2 be the eigenvector corresponding to λ1. Then,

AV = λ1V

A (V1 + iV2) = (α + iβ) (V1 + iV2) .

Hence,
AV1 = αV1 − βV2

AV2 = βV1 + αV2,

letting P = (V1,V2) we get P−1AP = J. Comparison of both sides of Equation (??) yields

J =

 α β

−β α

 . (1.9)

Theorem 3.2.2 gives us a simple method of computing the general form of An for any 2 × 2 real matrix.

In the first case, when P−1AP = D =

 λ1 0

0 λ2

, we have
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1.2. COMPUTING AN

An =
(
PDP−1

)n

= PDnP−1 (1.10)

= P

 λn
1 0

0 λn
2

 P−1.

In the second case, when P−1AP = J =

 λ 1

0 λ

, then

An = PJnP−1

= P

 λn nλn−1

0 λn

 P−1. (1.11)

Equation (??) may be easily proved by mathematical induction. In the third case, we have P−1AP =

J =

 α β

−β α

. Let ω = arctan(β/α). Then cosω = α/ |λ1| , sinω = β/ |λ1|. Now, we write the matrix J in

the form

J = |λ1|

 α/ |λ1| β/ |λ1|

−β/ |λ1| α/ |λ1|

 = |λ1|

(
cosω sinω
− sinω cosω

)
.

By mathematical induction one may show that

Jn = |λ1|
n
(

cos nω sin nω
− sin nω cos nω

)
. (1.12)

and thus

An = |λ1|
n P

 cos nω sin nω

− sin nω cos nω

 P−1 (1.13)

Example 1.2.2 Solve the system of difference equations

X(n + 1) = AX(n) (1.14)

where

A =

 −4 9

−4 8

 ,X(0) =

 1

0


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1.2. COMPUTING AN

SOLUTION The eigenvalues of A are repeated: λ1 = λ2 = 2. The only eigenvector that we are able to

find is V1 =

 2

3

. To construct P we need to find a generalized eigenvector V2. This is accomplished by

solving the equation (A − 2I)V2 = V1. Then, V2 may be taken as any vector

 x

y

, with 3y − 2x = 1. We

take V2 =

 1

1

. Now if we put P =

 3 1

2 1

, then P−1AP = J =

 2 1

0 2

. Thus, the solution of Equation

(??) is given by

X(n) = PJnP−1x(0)

=

 3 1

2 1


 2n n2n−1

0 2n


 1 −1

−2 3


 1

0


= 2n

(
1 − 3n
−2n

)
.

Remark 1.2.1 If a map f : R2
→ R2 is given by f (X0) = AX0, then f n (X0) = AnX0 = PJnP−1X0. In particular,

if X0 =

 1

0

, then f n (X0) = 2n

 1 − 3n

−2

 for all n ∈ Z+.

Exercises

In Problems 1-5, find the eigenvalues and eigenvectors of the matrix A and compute An. 1. A = −4.5 5

−7.5 8


2. A =

 4.5 −1

2.25 1.5


3. A =

 8/3 1/3

−4/3 4/3


4. A =

 2 3

−3 2


5. A =

 −2 −3

1 1


6. Let L : R2

→ R2 be defined by L(X) = AX, where A is as in Problem 1 . Find Ln

 0

1

.

7. Solve the difference equation X(n + 1) = AX(n), where A is as in Problem 3, and X(0) =

 1

1

.

8. Solve the difference equation X(n + 1) = AX(n), where A is as in Problem 4, and X(0) = X0.

9. Let f : R2
→ R2 be defined by f (X) = AX, with A as in Problem 5 . Find f n

 0

1

.

10. Let A be a 2 × 2 matrix with distinct real eigenvalues. Show that the corresponding eigenvectors of

A are linearly independent.
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1.3. FUNDAMENTAL SET OF SOLUTIONS

11. (a) If J =

 λ 1

0 λ

, show that Jn =

 λn nλn−1

0 λn

.

(b) If J =

 α β

−β α

, show that Jn = |λ|n

 cos nω sin nω

− sin nω cos nω

, where |λ| =
√
α2 + β2, ω = arctan

(
β
α

)
.

12. Let a matrix A be in the form

A =

 0 1

−p2 −p1

 .
(a) Show that if A has distinct eigenvalues λ1 and λ2, then

P−1AP =

 λ1 0

0 λ2

 ,

where P =

 1 1

λ1 λ2

.

(b) Show that if A has a repeated eigenvalue λ, then

P−1AP =

 λ 1

0 λ

 ,

where P =

 1 0

λ 1

.

(c) Show that if A has complex eigenvalues λ1 = α + iβ and λ2 = α − iβ, then

P−1AP =

 α β

−β α

 ,

where P =

 1 0

α β

.

1.3 Fundamental Set of Solutions

Consider the linear system

X(n + 1) = AX(n), (1.15)

where A is a 2 × 2 matrix. Then, two solutions X1(n) and X2(n) of Equation (??) are said to be linearly

independent if X2(n) is not a scaler multiple of X1(n) for all n ∈ Z+. In other words, if c1X1(n)+c2X2(n) = 0

for all n ∈ Z+, then c1 = c2 = 0. A set of two linearly independent solutions {X1(n),X2(n)} is called a

fundamental set of solutions of Equation (??).
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1.3. FUNDAMENTAL SET OF SOLUTIONS

Definition 1.3.1 Let {X1(n),X2(n)} be a fundamental set of solutions of Equation (??). Then

X(n) = k1X1(n) + k2X2(n), k1, k2 ∈ R (1.16)

is called a general solution of Equation (??). Finding X1(n) and X2(n) is generally an easy task. We now give an

explicit derivation.

In the sequel λ1, λ2 denote the eigenvalues of A; V1,V2 are the corresponding eigenvectors of A.

We have three cases to consider.

Case (i)

Suppose that P−1AP = J =

 λ1 0

0 λ2

. Then a general solution may be given by

X(n) = AnX(0) = PJnP−1X(0)

= (V1,V2)

 λn
1 0

0 λn
2


 k1

k2


where

 k1

k2

 = P−1X(0). Then,

X(n) = k1λ
n
1V1 + k2λ

n
2V2. (1.17)

Here, X1(n) = λn
1V1 and X2(n) = λn

2V2 constitute a fundamental set of solutions since in this case V1

and V2 are linearly independent eigenvectors. Note that one may check directly that λn
1V1 and λn

2V2 are

indeed solutions of Equation (??).

Case (ii)

Suppose that P−1AP = J =

 λ 1

0 λ

. Then, a general solution may be given by

X(n) = PJnP−1X(0)

= (V1,V2)

 λn nλn−1

0 λn


(
k1

k2

)
= k1λ

nV1 + k2

(
nλn−1V1 + λnV2

)
(1.18)

Hence, X1(n) = λnV1 and X2(n) = λnV2+nλn−1V1 constitute a fundamental set of solutions of Equation

(??). Case (iii)
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1.3. FUNDAMENTAL SET OF SOLUTIONS

Suppose that P−1AP = J =

 α β

−β α

. If ω = arctan(β/α), then the general solution may be given by

X(n) =PJnP−1X(0)

= (V1V2) |λ1|
n

 cos nω sin nω

− sin nω cos nω


(
k1

k2

)
= |λ1|

n [k1 cos nω + k2 sin nω) V1

+ (−k1 sin nω + k2 cos nω) V2] . (1.19)

Hence, X1(n) = |λ1|
n [(k1 cos nω) V1 − (k1 sin(nω)) V2] and X2(n) = (|λ1|

n [(k2 sin(nω)) V1 + (k2 cos(nω)] V2

constitute a fundamental set of solutions.

Example 1.3.1 Solve the system of difference equations

X(n + 1) = AX(n),X(0) =

(
1
2

)
,

where

A =

 −2 −3

3 −2


SOLUTION The eigenvalues of A are λ1 = −2 + 3i and λ2 = −2 − 3i. The corresponding eigenvectors

are V =

 −1

i

 and V̄ =

 −1

−i

, respectively.

This time, we take a short cut and use Equation (??). The vectors V1 and V2 referred to in this formula

are the real part of V,V1 =

 −1

0

, and the imaginary part of V,V2 =

 0

1

. Now, |λ1| =
√

13, ω =

arctan
(
−3
2

)
≈ 123.69◦. Thus,

X(n) =(13)n/2
[
(k1 cos nω + k2 sin nω)

(
−1
0

)
+ (−k1 sin nω + k2 cos nω)

(
0
1

)]
X(0) =

(
1
2

)
= k1

(
−1
0

)
+ k2

(
0
1

)
.

Hence, k1 = 1, k2 = 2. Thus,

X(n) = (13)n/2
[
(cos nω + 2 sin nω)

(
1
0

)
+ (− sin nω + 2 cos nω)

(
0
1

)]
= (13)n/2

(
− cos nω − 2 sin nω
− sin nω + 2 cos nω

)
.
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1.4. SECOND-ORDER DIFFERENCE EQUATIONS

1.4 Second-Order Difference Equations

A second-order difference equation with constant coefficients is a scalar equation of the form

u(n + 2) + p1u(n + 1) + p2u(n) = 0 (1.20)

Although one may solve this equation directly, it is sometimes beneficial to convert it to a two-

dimensional system. The trick is to let u(n) = x1(n) and u(n + 1) = x2(n).

Then we have
x1(n + 1) = x2(n)

x2(n + 1) = −p2x1(n) − p1x2(n)

which is of the form

X(n + 1) = AX(n) (1.21)

where

X(n) =

(
x1(n)
x2(n)

)
, and A =

 0 1

−p2 −p1

 .
The characteristic equation of A is given by

λ2 + p1λ + p2 = 0. (1.22)

Observe that we may obtain the characteristic Equation (??) by letting u(n) = λn in Equation (??).

Thus, if λ1 and λ2 are the roots of Equation (??), then u1(n) = λn
1 and u2(n) = λn

2 are solutions of Equation

(??).

Using Eqs. (??), (??), and (??), we can make the following conclusions:

1. If λ1 , λ2 and both are real, then the general solution of Equation (??) is given by

u(n) = c1λ
n
1 + c2λ

n
2 , (1.23)

2. If λ1 = λ2 = λ, then the general solution of Equation (??) is given by

u(n) = c1λ
n + c2nλn, (1.24)

3. If λ1 = α + iβ, λ2 = α − iβ, then the general solution of Equation (??) is given by

u(n) = |λ1|
n (c1 cos nω + c2 sin nω) , (1.25)

where ω = arctan(β/α).

13



1.5. PHASE SPACE DIAGRAMS

Example 1.4.1 Solve the second-order difference equation

x(n + 2) + 6x(n + 1) + 9x(n) = 0, x(0) = 1, x(1) = 0.

SOLUTION The characteristic equation associated with the equation is given by λ2 + 6λ + 9 = 0.

Hence, the characteristic roots are λ1 = λ2 = −3. The general solution is given by

x(n) = 9(−3)n + c2n(−3)n

x(0) = 1 = c1

x(1) = 0 = −3c1 − 3c2.

Thus, c2 = −1 and, consequently,

x(n) = (−3)n
− n(−3)n

= (−3)n(1 − n)

1.5 Phase Space Diagrams

One of the best graphical methods to illustrate the various notions of stability is the phase portrait or the

phase space diagram. Let f : R2
→ R2 be a given map. Then, starting from an initial point X0 =

 x1(0)

x2(0)

,

we plot the sequence of point X0, f (X0) , f 2 (X0) , f 3 (X0) , . . . and then connect the points by straight lines.

An arrow is placed on these connecting lines to indicate the direction of the motion on the orbit. In many

instances, we need to be prudent in choosing our initial points in order to get a better phase portrait. In

this section, we consider linear systems for which f (X) = AX, where A is a 2 × 2 matrix. Observe that

if A − I is nonsingular, i.e., det(A − I) , 0, then the origin

 0

0

 is the only fixed point of the map f .

Equivently, X∗ =

 0

0

 is the only fixed point of the system

X(n + 1) = AX(n) (1.26)

As stipulated in Theorem 3.2.2, there exists a nonsingular matrix P such that P−1AP = J where J is

one of the forms (1), (2), or (3) in Theorem 3.2.2. If we let

X(n) = PY(n) (1.27)

in Equation (??), we obtain

Y(n + 1) = JY(n). (1.28)

14



1.5. PHASE SPACE DIAGRAMS

Our plan here is to draw the phase portrait of Equation (??), then use the transformation (??) to obtain

the phase portrait of the original system (??).

(I). We begin our discussion by assuming that J is in the diagonal form J =

 λ1 0

0 λ2

, where λ1 and

λ2 are not necessarily distinct. Here we have two linearly independent solutions:

Y1(n) = λn
1V1, and Y2(n) = λn

2V2, where V1 =

(
1
0

)
and V2 =

(
0
1

)
are the eigenvectors of A corresponding to the eigenvalues λ1 and λ2, respectively.

Observe that Y1(n) is a multiple of V1, and thus must stay on the line emanating from the origin in the

direction of V1; in this case, the x axis. Similarly, Y2(n) must stay on the line passing through the origin

and in the direction of V2; in this case, the y axis. These two solutions are called straight line solutions.

The general solution is given by

Y(n) = k1λ
n
1

(
1
0

)
+ k2λ

n
2

(
0
1

)
,Y(0) =

(
k1

k2

)
. (1.29)

We have the following cases to consider:

1. If |λ1| < 1 and |λ2| < 1, then all solutions tend to the origin as n→∞. Observe that if |λ1| < |λ2| < 1,

then,
∣∣∣λn

1

∣∣∣ goes to zero faster than
∣∣∣λn

2

∣∣∣.

FIGURE 4.1a

(a) A sink: 0 < λ1 < λ2.

15



1.5. PHASE SPACE DIAGRAMS

FIGURE 4.1b

(b) A sink: 0 < λ2 < λ1 < 1.

FIGURE 4.2a (a) A source: λ1 > λ2 > 1.

And consequently, any solution Y(n) in the form (??) is asymptotic to the straight line solution

Y2(n) = λn
2 =

 0

1

 (see Fig. 4.1a).

On the other hand, if |λ1| > |λ2|, then Y(n) is asymptotic to Y1(n) = λn
1

 1

0

 (see Fig. 4.1b).

Phase portraits 4.1a and 4.1 b are called sinks.

2. If |λ1| > 1, and |λ2| > 1, then we obtain an source as illustrated in Figs. 4.2a and 4.2b.

Note that if |λ1| > |λ2| > 1, then Y(n) is asymptotic to Y2(n) = λn
2

 0

1

 (the y axis) when n→ −∞ and

is dominated by Y1(n) = λn
1

 1

0

 when n→∞.

16
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3. If |λ1| < 1 and |λ2| > 1, then we obtain a saddle (Fig. 4.3). In this case, when n → ∞Y(n), is

asymptotic to Y2(n) = λn
2

 0

1

 as n→∞ and is asymptotic to Y1(n) = λn
1

 1

0

 as n→ −∞. Similar

analysis is readily available for the case |λ1| > 1 and |λ2| < 1.

4. If λ1 = λ2, then

Y(n) = k1λ
n
(
1
0

)
+ k2λ

n
(
0
1

)
= λn

(
k1

k2

)

FIGURE 4.2b (b) A source: λ2 > λ1 > 1.

FIGURE 4.3 A saddle: 0 < λ1 < 1, λ2 > 1.
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1.5. PHASE SPACE DIAGRAMS

FIGURE 4.4 A sink: 0 < λ1 < λ2 < 1.

Hence, every solution Y(n) lies on a line passing through the origin with a slope k2/k1 (see Fig. 4.4).

Observe that in each of the four subcases, the presence of a negative eigenvalue will cause the solution

Y(n) to oscillate around the origin and the phase portrait will not look as nice as in Figs. 4.1a-4.4.

(II). Suppose that J is in the form

J =

 λ 1

0 λ


Then, we only have one straight line solution, Y1(n) = λnV1 = λn

 1

0

. The general solution is given

by

Y(n) = k1λ
n
(
1
0

)
+ k2

(
nλn−1

(
1
0

)
+ λn

(
0
1

))
= (k1λ + k2n)λn−1

(
1
0

)
+ k2λ

n
(
0
1

)
Now, if |λ| < 1, then, Y(n) → 0 as n → ∞, since lim

n→∞
nλn−1 = 0 (by L’Hopital Rule). Since the term

k1λn

 0

1

 tends to the origin, as n→∞, faster than the term (k1λ + k2n)λn

 1

0

, our solution Y(n) tends

to the origin asymptotic to the x axis (see Fig. 4.5a). In this case, the origin is called a

18
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FIGURE 4.5a

(a) A degenerate sink: λ1 = λ2 = λ, 0 < λ < 1.

FIGURE 4.5b

(b) A degenerate source: λ1 = λ2 = λ, λ > 1.

degenerate sink. Figure 4.5 b depicts the case when |λ| > 1 and in this case, the origin is called a

degenerate source.

(III). Suppose that J is in the form

J =

 α β

−β α

 .
In this case, we have no straight line solutions due to the presence of cos nβ and sin nβ in the

solutions Y1(n) = |λ1|
n (

k1 cos nβ + k2 sin nβ
)  1

0

 and Y2(n) = |λ1|
n (
−k1 sin nβ + k2 cos nβ

)  0

1

. The

general solution is given by

Y(n) = |λ1|
n
(

k1 cos nβ + k2 sin nβ
−k1 sin nβ + k2 cos nβ

)
19
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with Y(0) =

 k1

k2

. Define an angle γ by setting cosγ = k1/r0, and sinγ = k2/r0, where r0 =
√

k2
1 + k2

2.

Then
y1(n) = |λ1|

n r0 cos(nω − γ)

y2(n) = − |λ1|
n r0 sin(nω − γ).

Thus, the solution in polar coordinates is given by

r(n) =
√

y2
1(n) + y2

2(n)

= r0 |λ1|
n (1.30)

θ(n) = arctan
(

y2(n)
y1(n)

)
= −(nw − γ) (1.31)

It follows from Eqs. (??) and (??) that

1. If |λ1| < 1, then we have a stable focus where each orbit spirals toward the origin [Fig. 4.6(a)]. On the

other hand, if |λ1| > 1, then we have an unstable focus, where each orbit spirals away from the origin

[Fig. 4.6(b)].

2. If |λ1| = 1, then we have a center, where the orbits follow a circular path [Fig. 4.6(c)]. This is due to

the fact that y2
1(n) + y2

2(n) = r2
0.

To this end, we have obtained the phase portraits of Equation (??), which may be called "canonical"

phase portraits. To obtain the phase portraits of the original system (??), we apply (??), i.e., we apply P

to the orbits of Equation (??). Since P
(1

0
)

= (V1,V2)
(0

1
)

= V1, and P
(0

1
)

=

(V1,V2)
(0

1
)

= V2, applying P to the orbits Y(n) amounts to rotating the coordinates; the x axis to V1 and

the y axis to V2. In other words, the straight line solutions are now along the eigenvectors V1 and V2.

Using this observation, one may opt to sketch the phase portrait of Equation (??) directly and without

going through the canonical forms.

The set of points on the line emanating from the origin along V1 is called the stable subspace W2; the

set of points on the line passing through the origin in the direction of V2 is called the unstable subspace

W4. Hence,
W∗ =

{
X ∈ R2 : AnX→ 0 as n→∞

}
,

Wn =
{
X ∈ R2 : A−nX→ 0 as n→∞

}
The following example illustrates the above-described direct method to sketch the phase portrait.
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Example 1.5.1 Sketch the phase portrait of the system X(n + 1) = AX(n), where

A =

 1 1

0.25 1

 �

SOLUTION The eigenvalues of A are λ1 = 3
2 , and λ2 = 1

2 ; the corresponding eigenvectors are V1 =

 2

1


and V2 =

 2

−1

, respectively. Hence, we have two straight line solutions, X1(n) = (1.5)n

 2

1

 and X2(n)

= (0.5)n

 2

−1

. The general solution is given by X(n) = k1(1.5)n

 2

1

+ k2(0.5)n

 2

−1

. Note that x(n) is

asymptotic to the line through V1 =

 2

1

 (see Fig. 4.7).

1.6 Stability Notions

Consider the map f : R2
→ R2 and let X∗ =

 x∗1
x∗2

 be a fixed point of f ; i.e., f (X∗) = X∗.

Our main objective in this section is to introduce the main stability notions pertaining to the fixed

point x∗. Observe that these notions were previously
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introduced in Chapter 1. The only difference inR2 is that we replace the absolute value by a convenient

"norm" on R2. Roughly speaking, a norm of a vector (point) in R2 is a measure of its magnitude. A

formal definition follows.
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Definition 1.6.1 A real valued function on a vector space V is said to be a norm on V, denoted by || , if the

following properties hold:

1. |X| ≥ 0 and |X| = 0 if and only if X = 0, for X ∈ V.

2. |αX| = |α||X| for X ∈ V and any scalar α.

3. |X + Y| ≤ |X| + |Y| for X,Y ∈ V (the triangle inequality).

In the sequel, we choose the `1 norm on R2 defined for X =

 x1

x2

 as

|X| = |x1| + |x2| (1.32)

For each vector norm on R2 there corresponds a norm | | on all 2 × 2 matrices A =
(
ai j

)
defined as follows

‖A‖ = sup{|AX| : |X| ≤ 1} (1.33)

It may be easily shown that for X ∈ R2,

|AX| ≤ ‖A‖|X| (1.34)

Let ρ(A) be the spectral radius of A defined as ρ(A) = max {|λ1| , |λ2| : λ1, λ2 are the eigenvalues of A}. Then it

may be shown that for our selected vector norm

‖A‖1 = max {(|a11| + |a21|) , (|a12| + |a22|)} .

For example, if X =

 1

2

 , |X| = 3. And for the matrix A =

 1 3

−2 −4

, ‖A‖1 = max{3, 7} = 7. The

eigenvalues of A are λ1 = −2, λ2 = −1. Note that ρ(A) = max{| − 2|, | − 1|} = 2, and thus ρ(A) ≤ ‖A‖1.

It is left to the reader to prove, in general, that ρ(Ā) ≤ ‖A‖1 for any matrix A . Without any further delay, we

now give the required stability definitions.

Definition 1.6.2 A fixed point X∗ of a map f : R2
→ R2 is said to be

1. stable if given ε > 0 there exists δ > 0 such |X − X∗| < δ implies
∣∣∣ f n(X) − X∗

∣∣∣ < ε for all n ∈ Z+(see Fig.

4.8a).

2. attracting (sink) if there exists ν > 0 such that |X − X∗| < ν implies lim
n→∞

f n(X) = X∗. It is globally attracting

if ν = ∞ (see Fig. 4.9).

3. asymptotically stable if it is both stable and attracting. It is globally asymptotically stable if it is both stable

and globally attracting, (see Fig. 4.12(a))

4. unstable if it is not stable (see Fig. 4-8b).

Remark 1.6.1 In [91], Sedaghat showed that a globally attracting fixed point of a continuous one-dimensional

map must be stable. Kenneth Palmer pointed out to me that this result may be found in the book of Block and
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Coppel. Moreover, the proof in Block and Coppel requires only local attraction (see Appendix for a proof). The

situation changes dramatically in two- or higher dimensional continuous maps, for there are continuous maps that

possess a globally attracting unstable fixed point. We are going to present one of these maps and put several others

as problems for you to investigate.

Example 1.6.1 Consider the two-dimensional map in polar coordinates

1

(
r
θ

)
=

( √
r

√
2πθ

)
, r > 0, 0 ≤ θ ≤ 2π.

FIGURE 4.8a (a) The fixed point X∗ = 0 is stable.

FIGURE 4.8b (b) X∗ = 0 is an unstable fixed point.
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FIGURE 4.9 x∗ =
(1

0
)

is an unstable globally attracting fixed point.

Then,

1n
(

r
θ

)
=

(
r2−n

(2π)(1−2−n)θ2−n

)

Clearly limn→∞ 1
n(r
θ

)
=

( 1
2π

)
≡

 1

0

. Thus, each orbit is attracted to the fixed point
(1

0
)
. However, if

θ = δπ, 0 < δ < 1, then the orbit of

 r

θ

 will spiral clockwise around the fixed point
(1

0
)

before converging to it.

Hence,

 1

0

 is globally attracting but not asymptotically stable (see Fig. 4.9).

1.7 Stability of Linear Systems

In this section, we focus our attention on linear maps where f (X) = AX, and A is a 2 × 2 matrix.

Equivalently, we are interested in the difference equation

X(n + 1) = AX(n) (4.41)

For such linear maps, we can provide complete information about the stability of the fixed point

X∗ =

 0

0

. The main result now follows.

Theorem 1.7.1 The following statements hold for Equation (??):

(a) If ρ(A) < 1, then the origin is asymptotically stable.
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(b) If ρ(A) > 1, then the origin is unstable.

(c) If ρ(A) = 1, then the origin is unstable if the Jordan form is of the form

 λ 1

0 λ

, and stable otherwise.

Proof. Suppose that ρ(A) < 1. Then it follows from Eqs. (??), (??), (??), that lim
n→∞

X(n) = 0. Thus, the

origin is (globally) attracting. To prove stability, we consider three cases.

(i) Suppose that the solution X(n) is given by Equation (??). This is the case when the eigenvalues of

the matrix A are real and there are two linearly independent eigenvectors.

X(n) = P

 λn
1 0

0 λn
2

 P−1X(0).

Hence,
| X(n)‖ ≤ ‖P‖

∥∥∥P−1
∥∥∥ρ(A)|X(0)|

≤M|X(0)|

where M = ‖P‖
∥∥∥P−1

∥∥∥ρ(A). Now, given ε > 0, let δ = ε/M. Then |X(0)| < δ implies that |X(n)| < Mδ = ε.

This shows that the origin is stable.

(ii) Suppose that the solution X(n) is given by Equation (??). This case occurs if the matrix A has a

repeated eigenvalue λ and only one eigenvector.

X(n) = P

 λn nλn−1

0 λn

 P−1X(0)

|X(n)| ≤ ‖P‖
∥∥∥P−1

∥∥∥ (
n|λ|n−1 + |λ|n

)
|X(0)|.

Since n|λ|n → 0 as n → ∞, there exists N ∈ Z+, such that the term
(
n|λ|n−1 + |λ|n

)
is bounded by a

positive number L. Hence,

|X(n)| ≤M|X(0)|

where M = L‖P‖
∥∥∥P−1

∥∥∥. The proof of the stability of the origin may be completed by seting δ = ε/M as in

part (a).

(iii) If A is not in the form

 λ 1

0 λ

, then it is either diagonalizable to J =

 λ1 0

0 λ2

, where |λ1| < 1

and |λ2| = 1 or |λ2| < 1 and |λ1| = 1. In either case, Jn is bounded and hence the origin is stable.
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1.8 The Trace-Determinant Plane

1.8.1 Stability Analysis

Table (4.1) provides a partial summary of everything we have done so far. In this section we provide

another important way of presenting these results, namely, trace-determinant plane, where we employ

pictures, rather than a table. This turns out to be a better scheme when one is interested in studying

bifurcation in two-dimensional systems.

The following two results provide the framework for using the trace-determinant plane. Recall that

for matrix A =

 a11 a12

a21 a22

 , tr A = a11 + a22, and det A = a11a22 + a12a21.

Theorem 1.8.1 Let A =
(
ai j

)
be a 2 × 2 matrix. Then ρ(A) < 1 if and only if

| tr A| − 1 < det A < 1. (1.35)

Proof.

(i) Assume that ρ(A) < 1. If λ1, λ2 are the eigenvalues of A, then |λ1| < 1 and |λ2| < 1. The characteristic

equation of the matrix A is given by det(A−λI) = λ2
− (a11 + a22)λ− (a11a22 − a12a21) = 0, or λ2

− (tr A)λ+

det A = 0. Hence the eigenvalues are

λ1 =
1
2

[
tr A +

√
(tr A)2 − 4 det A

]
,

λ2 =
1
2

[
tr A −

√
(tr A)2 − 4 det A

]
.

Case (a) λ1 and λ2 are real roots, i.e., (tr A)2
− 4 det A ≥ 0. Now −1 < λ1, λ2 < 1 implies that

−2 < tr A ±
√

(tr A)2 − 4 det A < 2

27



1.8. THE TRACE-DETERMINANT PLANE

or

− 2 − tr A <
√

(tr A)2 − 4 det A < 2 − tr A (1.36)

− 2 − tr A < −
√

(tr A)2 − 4 det A < 2 − tr A. (1.37)

Squaring the second inequality (??) yields

1 − tr A + det A > 0. (1.38)

Similarly, if we square the first inequality in (??) we obtain

1 + tr A + det A > 0. (1.39)
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Now from the second inequality (??) and the first inequality in (??) we obtain 2 + tr A > 0 and

2 − tr A > 0 or | tr A| < 2. Since (tr A)2
− 4 det A ≥ 0, it follows that

det A ≤ (tr A)2/4 < 1. (1.40)

Combining (??), (??) and (??) yields (??).

Case (b) λ1 and λ2 are complex conjugates, i.e.,

(tr A)2
− 4 det A < 0. (1.41)

In this case we have λ1,2 = 1
2

[
tr A ± i

√
4 det A − (tr A)2

]
and

|λ1|
2 = |λ2|

2 =
(tr A)2

4
+

4 det A
4

−
(tr A)2

4
= det A.

Hence 0 < det A < 1. To show that inequalities (??) and (??) hold, note that since det A > 0 either (??)

(if tr A > 0 ) or (4.46) (if tr A < 0 ) holds. Without loss of generality, assume that tr A > 0. Then (??) holds.

From (??), tr A < 2
√

det A. If we let det A = x, then x ∈ (0, 1) and f (x) = 1 + x − 2
√

x < 1 + det A − tr A.

Note that f (0) = 1 and f ′(0) = 1− 1
√

x
indicate that f is decreasing on (0, 1) with range (0, 1). This implies

that 1 + det A − tr A > f (x) > 0 and this completes the proof.

(ii) Conversely, assume that (??) holds. Then we have two cases to consider.

Case (a) (tr A)2
− 4 det A ≥ 0. Then

∣∣∣λ1,2

∣∣∣ =
1
2

∣∣∣∣tr A ±
√

(tr A)2 − 4 det A
∣∣∣∣

<
1
2

∣∣∣∣tr A ±
√

(det A + 1)2 − 4 det A
∣∣∣∣

<
1
2

(
det A + 1 +

√
(det A − 1)2

)
=

1
2

(det A + 1 − (det A − 1)) = 1.

Case (b) (tr A)2
− 4 det A < 0. Then

∣∣∣λ1,2

∣∣∣ =
1
2

∣∣∣∣tr A ± i
√

4 det A − (tr A)2
∣∣∣∣

=
1
2

√
(tr A)2 + 4 det A − (tr A)2

=
√

det A < 1.

As a by-product of the preceding result, we obtain the following criterion for asymptotic stability.

Corollary 1.8.1 The origin in Equation (??) is asymptotically stable if and only if condition (??) holds true.
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Note that condition (??) may be spelled out in the following three inequalities:

1 + tr A + det A > 0, or

det A > − tr A − 1(??)′ (1.42)

1 − tr A + det A > 0, or

det A > tr A − 1(??)′ (1.43)

det A < 1.(??)′ (1.44)

Viewing det A as a function of tr A, the above three inequalities give us the stability region as the interior of the

triangle bounded by the lines det A = − tr A − 1,det A = tr A − 1, and det A = 1.

Next we delve a little deeper into finding the exact values of the eigenvalues of the matrix A along the boundaries

of the triangle enclosing the stability region. The following result provides us with the needed answers. Let λ1 =

1
2

(
tr A +

√
(tr A)2 − 4 det A

)
, λ2 = 1

2

(
tr A −

√
(tr A)2 − 4 det A

)
be the eigenvalues of A.

Theorem 1.8.2 The following statements hold for any 2 × 2 matrix A.

(i) If | tr A| − 1 = det A, then we have

(a) the eigenvalues of A are λ1 = 1 and λ2 = det A if tr A > 0,

(b) the eigenvalues of A are λ2 = −1 and λ1 = −det A if tr A < 0..

(ii) If | tr A| − 1 < det A, and det A = 1, then the eigenvalues of A are e±iθ, where θ = cos−1(tr A/2).

Proof.

(i) Let | tr A| − 1 = det A. Then (tr A)2
− 4 det A = (det A + 1)2

≥ 0. This implies that the eigenvalues are

real numbers. Moreover, λ1,2 = 1
2

(
tr A ±

√
(tr A)2 − 4 det A

)
= 1

2 (tr A ± (det A − 1)).

(a) If tr A > 0, then tr A = 1 + det A, and consequently,

λ1,2 =

 1

det A
.

(b) If tr A < 0, then tr A = −1 − det A, and consequently,

λ1,2 =

 1

det A
.

(ii) Let | tr A|−1 < det A, and det A = 1. Then (tr A)2
−4 det A < (det A+1)2

−4 = 0. Hence, the eigenvalues

30



1.8. THE TRACE-DETERMINANT PLANE

are complex conjugates. Moreover,

λ1,2 =
1
2

(
(tr A)2/4 ±

√
4 det A − (tr A)2

)
=

1
2

tr A ±
√

1 − (tr A)2.

Thus
∣∣∣λ1,2

∣∣∣ =
√

(tr A)2/4 + 1 − (tr A)2/4 = 1. Furthermore,θ = arctan
(
λ1,2

)
= tan−1

±
√

1 − (tr A)2/4
(tr A)2/4

 =

cos−1(tr A/2), which give λ1,2 = e±iθ = cosθ± i sinθ.

1.8.2 Navigating the Trace-Determinant Plane

The trace-determinant plane is effective in the study of linear systems with parameters. It provides us

a chart of those locations where we can expect dramatic changes in the phase portrait. There are three

critical loci. Let T denotes the trace and D denote the determinant. Then there are three critical lines:

D = tr A − 1,D = − tr A − 1, and D = 1; they enclose the stability region in the trace-determinant planes.

We now illustrate our analysis by the following example.

FIGURE 4.10a

(a) The stability region for Equation (??) is the shaded triangle. FIGURE 4.10b (b) The determination of

eigenvalues in different regions.
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FIGURE 4.10c (c) Description of the dynamics of Equation (??) in all the regions in the det-trace plane.

Example 1.8.1 Consider the one-parameter family of linear systems X(n + 1) = AX(n), where

A =

 −1 a

−2 1


which depends on the parameter a. As a varies, the determinant of the matrix, det A, is always 2a − 1, while

the trace of the matrix, tr A, is always 0 . As we vary the parameter a from negative to positive values, the

corresponding point ( T,D ) moves vertically along the line T = 0. Now if D < −1, which occurs if 2a − 1 < −1

or a < 0, we have a degenerate case, λ1 = 1 and λ2 = −1 with corresponding eigenvectors

 0

1

 and

 1

1

. Thus

every point on the y-axis is a fixed point and every other point in the plane is periodic of period 2. For 0 < a ≤ 1
2 ,

we have a sink, and for 1
2 < a < 1 we have a spiral sink. At exactly a = 1 we have a center, and if a > 1 we have a

spiral source (see Fig 4.10b).

The values of a where critical dynamical changes occur are called bifurcation values. In this example, the

bifurcation values of a are 0, 1
2 , 1. ]

1.9 Liapunov Functions for Nonlinear Maps

In 1892, the Russian mathematician A. M. Liapunov (sometimes transliterated as Lyapunov) introduced

a new method to investigate the stability of
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nonlinear differential equations. This method, now known as Liapunov’s second method, allows

one to determine the stability of solutions to a differential equation without actually solving it.

In this section, we will adapt Liapunov’s second method to two-dimensional maps/difference equa-

tions. The adaptation process is more or less straightforward and follows closely to LaSalle and Elaydi.

Consider the difference equation

X(n + 1) = f (X(n)) (1.45)

where f : G→ R2,G ⊂ R2, is continuous. Let X∗ be a fixed point of f , that is, f (X∗) = X∗. For V : R2
→ R,

we define the variation ∆V of V relative to Equation (4.52) as

∆V(X) = V( f (X)) − V(X).

Hence,

∆V(X(n)) = V(X(n + 1)) − V(X(n)).

So, if ∆V ≤ 0, then V is nonincreasing along the orbits of f .

Definition 1.9.1 A real valued function V : G→ R,G ⊂ R2, is said to be a Liapunov function on G if

1. V is continuous on G

2. ∆V(X) ≤ 0, whenever X and f (X) ∈ G.

Let B(X, γ) =
{
Y ∈ R2 : |Y − X| < γ

}
denote the open ball around X. Then, we say that the Liapunov function

is positive definite at X∗ if V(X) > 0
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for all X ∈ B (X∗, δ), for some δ > 0,X , X∗, and V (X∗) = 0. The function V is said to be negative definite if −V is

positive definite. We now present the reader with an informal geometrical discussion on the first Liapunov stability

theorem. Without loss of generality, we focus our attention on the stability of the fixed point X∗ = 0. Suppose

that there exists a positive definite Liapunov function V defined on B(0, η), η > 0. Figure 4.11 (a) illustrates the

graph of V in a three-dimensional coordinate system, while Fig. 4.11(b) depicts the level curves V

 x1

x2

 = c in

the plane. Assume that for some ε > 0,B(0, ε) contains the level curve V

 x1

x2

 = c̃ and this level curve, in turn,

contains the ball B(0, δ), 0 < δ ≤ ε.

Now, if X ∈ B(0, δ), then V(X) ≤ c̃. Since ∆V ≤ 0, it follows that V
(

f n(X)
)
≤ V(X) ≤ c̃, for all n ∈ Z+.

Consequently, the orbit of X stays indefinitely in B(0, ε), and hence 0 is a stable fixed point. On the other

hand, if ∆V < 0, then V
(

f n(X)
)
< V(X) < c̃ for all n ∈ Z+, which intuitively leads to the conclusion that

f n(X)→ 0 as n→∞. This is the essence of the proof of the next theorem. A more rigorous proof follows.

Theorem 1.9.1 Suppose that V is a positive definite Liapunov function defined on an open ball G = B
(
X∗, γ

)
around a fixed point X∗ of a continuous map f on R2. Then, X∗ is stable. If, in addition, ∆V(X) < 0, whenever X

and f (X) ∈ G,X , X∗, then X∗ is asymptotically stable on G. Moreover, if G = R2 and V(X)→ ∞ as |X| → ∞,

then X∗ is globally asymptotically stable.

Proof. Choose α1 > 0 such that B (X∗, α1) ⊂ G ∩ H. Since f is continuous, there is α2 > 0 such that if

X ∈ B (X∗, α2) then f (X) ∈ B (X∗, α1).

Let 0 < ε ≤ α2 be given. Define ψ(ε) = min {V(X)|ε ≤ |X − X∗ |≤ α1}. By the intermediate value theorem,

there exists 0 < δ < ε such that V(X̄) < ψ(ε) whenever |X − X∗| < δ.

Realize now that if X0 ∈ B (X∗, δ), then X(n) ∈ B (X∗, ε) for all n ≥ 0. This claim is true because, if

not, there exists X0 ∈ B (X∗, δ) and a positive integer m such that X(r) ∈ B (X∗, ε) for 1 ≤ r ≤ m and

X(m + 1) < B (X∗, ε). Since X(m) ∈ B (X∗, ε) ⊂ B (X∗, α2), it follows that X(m + 1) ∈ B (X∗, α1). Consequently,
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V(X(m + 1)) ≥ ψ(ε). However, V(X(m + 1)) ≤ . . . ,≤ V (X0) < ψ(ε) and we thus have a contradiction. This

establishes stability.

To prove asymptotic stability, assume that X0 ∈ B (X∗, δ). Then X(n) ∈ B (X∗, ε) holds true for all

n ≥ 0. If {X(n)} does not converge to X∗, then it has a subsequence {X (ni)} that converges to Y ∈ Rk. Let

E ⊂ B (X∗, α1) be an open neighborhood of Y with X∗ < E. Having already defined on E the function

h(x) = V( f (X))/V(X), we may consider h as well defined, continuous, and h(X) < 1 for all X ∈ E. Now if

η ∈ (h(Y), 1) then there exists δ > 0 such that X ∈ B(Y, δ) implies h(X) ≤ η. Thus for sufficiently large ni,

V
(

f (X (ni))
)
≤ ηV (X (ni − 1)) ≤ η2V (X (ni − 2)) , . . . ,≤ ηni V (X0) .

Hence,

lim
ni→∞

V (X (ni)) = 0.

But, since lim
ni→∞

V (X (ni)) = V(Y), this statement implies that V(Y) = 0, and consequently Y = X∗.

To prove the global asymptotic stability, it suffices to show that all solutions are bounded and then

repeat the above argument. Begin by assuming there exists an unbounded solution X(n), and then some

subsequence {X (ni)} → ∞ as ni → ∞. Since V(X) → ∞, as |X| → ∞, this assumption implies that

V (X (ni)) → ∞ as ni → ∞, which is a contradiction since V (X0) > V (X (ni)) for all i. This concludes the

proof.

Example 1.9.1 Consider the two-dimensional system

x(n + 1) =
ay(n)

1 + x2(n)

y(n + 1) =
bx(n)

1 + y2(n)
(1.46)

or the map

F
(
x
y

)
=

(
ay/

(
1 + x2

)
bx/

(
1 + y2)

)
.

Discuss the stability of the zero solution of Equation (??)

SOLUTION Take V(x, y) = x2 + y2. Then V is positive definite. Moreover,

35



1.9. LIAPUNOV FUNCTIONS FOR NONLINEAR MAPS

∆V
(
x
y

)
= V

(
F
(
x
y

))
− V

(
x
y

)
=

a2y2

(1 + x2)2 +
b2x2(

1 + y2)2 − x2
− y2 (1.47)

=

 b2(
1 + y2)2 − 1

 x2 +

(
a2

(1 + x2)2 − 1
)

y2

≤

(
b2
− 1

)
x2 +

(
a2
− 1

)
y2.

Now, we have three cases to consider. The first case is if a2 < 1 and b2 < 1, then ∆V < 0 and thus we

conclude from Theorem 4.3 that the origin is asymptotically stable. Furthermore, since V

 x

y

→ ∞ as∣∣∣∣∣∣∣∣
 x

y


∣∣∣∣∣∣∣∣→∞, the origin is globally asymptotically stable (see Fig. 4.12(a)).

However, in the second case, if a2
≤ 1 and b2

≤ 1, then ∆V ≤ 0 and we can only conclude from

Theorem 4.3 that the origin is stable.

In the final case, when a2 > 1 and b2 > 1, Theorem 4.3 fails to provide us with information about the

stability (or lack thereof) of the origin.

It is now evident that finer analysis is needed to fully understand the stability in the last two cases.

Subsequently, we are led to an important result due to LaSalle which is commonly known as LaSalle’s

invariance principle. To prepare for such important results, we should become familiar with certain

terminology, some old and some new.

Recall that a set H is (positively) invariant under a map f : R2
→ R2 if f (H) ⊂ H. The (positive) limit

set Ω(x) of x ∈ R2 is defined to be the set of all limit points of its positive orbit O(x). It may be shown

(Problem 2) that

Ω(x) =

∞⋂
i=0

∞⋃
n=i

f n(x). (1.48)

Furthermore, Ω(x) is closed and (positively) invariant (Problem 3). A closed set H is said to be

invariantly connected if it is not the union of two nonempty disjoint closed invariant sets.

The nagging question still persists as to whether or not Ω(X) is nonempty for a given X ∈ R2. The

next lemma settles this question.

Lemma 1.9.1 If O(x) is bounded, then Ω(x) is nonempty, compact, and invariant.

Proof. The proof is left to the reader as Problem 2.
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Now, let V be a Liapunov function on a subset G ⊂ R2. Define

E = {X ∈ Ḡ : ∆V(X) = 0}.

Let M be the maximal invariant subset of E, and for c ∈ R+,V−1(c) = {X : V(X) = c,X ∈ R2
}
.

Theorem 1.9.2 (LaSalle’s Invariance Principle)

Suppose that V is a positive definite Liapunov function defined on an open ball G = B
(
X∗, γ

)
around a fixed

point X∗ of a two-dimensional map f . If for X ∈ G,O(X) is bounded and contained in G, then for some c ∈ R+,

f n(X)→M ∩ V−1(c) as n→∞.

Proof. Let X ∈ R2 such that O(x) is bounded. Then, by Lemma 4.1, Ω(X) , φ. Now, since V
(

f n(X)
)

is nonincreasing and bounded below, lim
n→∞

V
(

f n(X)
)

= c, for some c ∈ R+. For Y ∈ Ω(X), f ni (X) → Y as
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ni →∞, for some subsequence of positive integers ni. By the contimuity of V, it follows that

lim
ni→∞

V
(

f ni (X)
)

= V(Y) = c

Hence, Ω(X) ⊂ V−1(c). Furthermore, since Ω(X) is invariant, V( f (Y)) = V(Y) and consequently,

∆V(Y) = 0. Hence Ω(X) ⊂ E. But, Ω(X) is invariant, which implies that it must be contained in M.

Therefore, f n(X)→M ∩ V−1(c).

A remark is now in order. Note that if M = {X∗} is a singleton, then the preceding theorem tells us

that X∗ is definitely an asymptotically stable fixed point. This observation leads to the complete analysis

of part (b) of Example 3.9.1.

Example 1.9.2 (Example 4.8 Revisited).

Let us reexamine case (b) in Example 3.9.1 in light of LaSalle’s invariance principle. Here are the two subcases to

consider.

Case one is where a2
≤ 1, b2

≤ 1, and a2 + b2 < 2. Without loss of generality, we may assume that a2 < 1 and

b2 = 1. Then, ∆V ≤
(
a2
− 1

)
y2 which is zero when y = 0. Thus E is the x axis. To find the largest invariant

subset M of E, note that for

 x

0

 ∈ E,F

 x

0

 =

 0

bx

. Hence, M =


 0

0


. Consequently, the origin is

asymptotically stable.

In case two, a2 = 1 and b2 = 1. It follows from Equation (??) that ∆V = 0 if x = 0 or y = 0. Thus E = M =

the union of the two coordinate axes. LaSalle’s invariance now tells us that there exists c > 0 such that each orbit

O+(u) approaches the set


 ±c

0

 ,
 0

±c


.

Now, if c , 0,F4

 c

0

 =

 c

0

, and that

 c

0

 is a point of period 4 with the cycle


 c

0

 ,
 0

bc

 ,
 abc

0

 ,
 0

ac


.

Similarly, we may show that


 0

c

 ,
 ac

0

 ,
 0

abc

 ,
 bc

0


 is also a 4-cycle. Since Ω(u) is invariantly con-

nected, each orbit must approach only one of these 4-cycles [Fig. 4.12(b)]. Finally, we observe that if ab = 1, then

we have 2-cycles instead.

We now end this section by giving a result about instability. This will enable us to treat the remaining case of

Example 3.9.1.

Theorem 1.9.3 Let V : G ⊂ R2
→ R be a continuous function such that relative to Equation (??), ∆V positive

definite (negative definite) on a neighborhood of a fixed point x∗. If there erists a sequence xi → x∗ as i→ ∞ with

V (xi) > 0 (V (xi) < 0 ), then x∗ is unstable.

Proof. Assume that ∆V(x) > 0 for x ∈ B(η), x , 0,∆V(0) = 0. We will prove Theorem 3.9.3 by

contradiction, first assuming that the zero solution is stable. Then for ε < η, there will exist δ < ε such

that ‖x0‖ < δ implies ‖x (n, 0, x0)‖ < ε,n ∈ Z+.
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Since ai → 0, pick x0 = a j for some j with V (x0) > 0, and ‖x0‖ < δ. Hence 0 (x0) ⊂ B(ε) ⊂ B(η)

is closed and bounded (compact). Since its domain is compact, V(x(n)) is also compact and therefore

bounded above. Since V(x(n)) is also increasing, it follows that V(x(n)) → c. Following the proof of

LaSalle’s invariance principal, it is easy to see that lim
n→∞

x(n) = 0. Therefore, we would be led to believe

that 0 < V (x0) < lim
n→∞

V(x(n)) = 0. This statement is unfeasible-so the zero solution cannot be stable, as

we first assumed. The zero solution of Equation (??) is thus unstable.

The conclusion of the theorem also holds if ∆V is negative definite and V (ai) < 0. We are now in

a position to tackle the remaining case in Example 4.8. Assume now that a2 > 1 and b2 > 1. Let δ be

sufficiently small such that b2 >
(
1 + δ2

)2
and a2 >

(
1 + δ2

)2
. Define a function V

 x

y

 = x2 + y2 on the

open disc B(0, δ) centered at the origin and with radius δ. Then V is clearly positive definite. Moreover,

for

 x

y

 ∈ B(0, δ) we have

∆V
(
x
y

)
=

 b2(
1 + y2)2 − 1

 x2 +

(
a2

(1 + x2)2 − 1
)

y2

≥

(
b2

1 + δ2)2 − 1
)

x2 +

(
a2

(1 + δ2)2 − 1
)

y2

> 0 if
(
x
y

)
,

(
0
0

)
.

Hence by Theorem 3.7.1, the origin is unstable (see Fig. 4.12(c)).

1.10 Linear Systems Revisited

In Sec. 3.3, we have settled most of the questions concerning the stability of second-order linear systems:

X(n + 1) = AX(n). (1.49)

In this section, we are going to construct suitable Liapunov functions for System (??). This is important

for our program since by modifying such Liapunov functions we can find appropriate Liapunov functions

for a large class of nonlinear equations of the form

Y(n + 1) = AY(n) + 1(Y(n))

which we will study in the next section. But, before embarking on our task we need to introduce a few

preliminaries about definite matrices.

Let X ∈ R2,B =
(
bi j

)
a real symmetric 2 × 2 matrix, and consider the quadratic form V : R2

→ R
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defined by

V(X) = XTBX =

2∑
i=1

2∑
j=1

bi jXiX j (1.50)

where XT denotes the transpose of vector X. A matrix B is said to be positive (negative) definite if the

corresponding V(X) as defined in Equation (??) is positive (negative) for all 0 , X ∈ R2. If, however,

V(X) ≥ 0(V(X) ≤ 0) for all X ∈ R2, then B is positive (negative) semidefinite. The following result, due

to Sylvester, gives a complete characterization of the notion of definiteness of V.

Theorem 1.10.1 Let V be a quadrutic form as defined in Equation (??). Then the following statements hold true:

1. V is positive definite if and only if all principle minors of B are positive, i.e., if and only if

b11 > 0 and det B > 0.

2. V is negative definite if and only if

b11 < 0 and det B > 0.

3. V is positive (negative) definite if and only if all eigenvalues of B are nonzero and positive (negative), respectively.

4. If λ1, λ2 are the eigenvalues of B, λm = mini |λi| , λM = maxi |λi|, i = 1, 2, then

λm|X|2 ≤ V(X) ≤ λM|X|2.

5. V is semidefinite (positive or negative) if and only if the nonzero eigenvalues of B have the same sign.

Let B =

 3 2

2 5

. Then, the principal minors are 3 and

 3 2

2 5

 where both have positive determinants.

Hence, B is positive definite by Theorem 3.10.1. Notice that the eigenvalues of B are λ1 = 4
√

5, and

λ2 = 4 −
√

5, which are also positive. Moreover, if we let V(X) = XTBX, then

V(X) =
(

x1 x2

)  3 2

2 5


 x1

x2


= 3x2

1 + 4x1x2 + 5x2
2.

Let us now go back to Equation (??) and consider the function V(X) = XTBX, where B is positive

definite as a prospective candidate for a Liapunov function. Then,

∆V(X(n)) = XT(n + 1)BX(n + 1) − XT(n)BX(n)

= XT(n)ATBAX(n) − XT(n)BX(n)

= XT(n)
(
ATBA − B

)
X(n).
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Thus, ∆V(X(n)) < 0 if and only if

ATBA − B = −C (1.51)

for some positive definite matrix C. Equation (??) is called the Liapunov equation of System (??). The

preceding argument established part of the following result whose complete proof is omitted.

Theorem 1.10.2 ρ(A) < 1 if and only if for every symmetric and positive definite matrix C, Equation (??) has a

unique solution B, which is also symmetric and positive definite.

An immediate corollary of Theorem 3.10.2 , which will be useful in the next section, now follows.

Corollary 1.10.1 If ρ(A) > 1, then there erists a real symmetric matrix B that is not positive semidefinite such

that Equation (??) holds for some symmetric positive definite matrix C.

1.11 Stability via Linearization

In Chapter 1, we saw how the values of the derivative f ′ (o∗) of a nonlinear, one-dimensional map f

at a hyperbolic fixed point o∗ determines completely the stability of o∗. For if
∣∣∣ f ′ (o∗)∣∣∣ < 1, then o∗ is

asymptotically stable or a sink if
∣∣∣ f ′ (o∗)∣∣∣ > 1, then o∗ is unstable or a repeller. In essence, what we are

saying is that the behavior of the linear difference equation

Y(n + 1) = f ′ (X∗) Y(n) (1.52)

determines the behavior of the original equation

X(n + 1) = f (X(n)) (1.53)

near the fixed points. In the language of maps, this amounts to saying that the behavior of the linear

map 1(X) = f ′ (X∗) X determines the behavior of the nonlinear map f (X) near the fixed point X∗. Such a

process is commonly called a linearization of the nonlinear map f or the difference equation (??). Now,

consider a two-dimensional map f : G ⊂ R2
→ R2, where G is an open subset of R2. Then f is said to be

contimuously differentiable, (or a C1 map) if its partial derivatives
∂ f
∂x1

and
∂ f
∂x2

exist and are continuous.

If there is a 2 × 2 matrix A such that

lim
X→Q

| f (X) − f (Q) − A(X −Q)|
|X −Q|

= 0,
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then the derivative D f (Q) of f at Q is defined as D f (Q) = A. Hence, if f =

 f1

f2

, then

D f (Q) = A =


∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2


Q

The matrix A is often called the Jacobian matrix of f . By the mean value theorem, we have

f (X) = f (Q) + A(X −Q) + 1(X,P) (1.54)

where

lim
X→Q

1(X,Q)
|X −Q|

= 0 (1.55)

Statement (??) may be expressed in the little "o" language as 1(X,Q) = o(|X −Q|) as X tends to Q.

Suppose now that Q = X∗ is a fixed point of f , that is, f (X∗) = X∗. Then Equation (??) yields

f (X) − X∗ = A (X − X∗) + 1 (X,X∗) . (1.56)

It is clear that 1 (X∗,X∗) = 0. To simplify our exposition, we make the change of variables Y = X − X.

Equation (??) becomes

f (Y + X∗) − X∗ = AY + 1(Y) (1.57)

If we now let h(Y) = f (Y + X∗) − X∗ in Equation (??), we get

h(Y) = AY + 1(Y) (1.58)

with 1(Y) = o(|Y|) as Y tends to 0 .

We now make two important observations concerning the relationship between the maps f and h.

First, since h(0) = f (X∗) − X∗ = 0, it follows that 0 is a fixed point of h if and only if X∗ is a fixed point

of f . Second, note that hn(Y) → 0 as n → ∞ if and only if f n(X) = f n (Y + X∗) → X∗ as n → ∞. Hence,

0 is stable (asymptotically stable) under h if and only if X∗ is stable (asymptotically stable) under f . A

similar statement can be made about instability. Hence, without loss of generality, we may work directly

with the map h in Equation (??). In other words, it suffices to consider the nonhomogeneous system

Y(n + 1) = AY(n) + 1(Y(n)) (1.59)

with A = D f (X∗) , 1(Y) = o(|Y|), and 1(0) = 0. The linear part of Equation (??) is the homogeneous
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equation

X(n + 1) = AX(n). (1.60)

The main result of this section now follows.

Theorem 1.11.1 Let f : G ⊂ R2
→ R2 be a C1 map, where G is an open subset ofR2,X∗ is a fixed point of f , and

A = D f (X∗). Then the following statements hold true:

1. If ρ(A) < 1, then X∗ is asymptotically stable.

2. If ρ(A) > 1, then X∗ is unstable.

3. If ρ(A) = 1, then X∗ may or may not be stable.

Proof.

1. Assume that ρ(A) < 1. Then by virtue of Theorem 4.10 , there exists a real symmetric and positive

definite matrix B such that ATBA − B = −C, where C is positive definite. Now, consider the Liapunov

function V(Y) = YTBy. Then the variation of V relative to Equation (??) is given by

∆VY = −YTCY + 2YTATB1(Y) + V(1(Y)). (1.61)

Now, Equation (??) allows us to pick a γ > 0 such that YTCY ≥ 4γ|Y|2 for all Y ∈ R2. There exists

δ > 0 such that if |Y| < δ, then
∣∣∣ATB1(Y)

∣∣∣ ≤ γ|Y| and V(1(Y)) ≤ γ|Y|. Hence, it follows from Equation

(??) that ∆V(Y(n)) ≤ −γ|Y(n)|2 which implies by Theorem 3.7.1 that the zero solution of Equation (??) is

asymptotically stable.

2. Assume that ρ(A) > 1. Then, we use Corollary 3.10.1 to choose a real, symmetric 2 × 2 matrix B

such that BTAB − B = −C is negative definite, where B is not positive semidefinite. Thus, the function

V(Y) = YTBY is negative at points arbitrarily close to the origin. Now, as in part 1 , ∆V(Y(n)) ≤ −γ|Y(n)|2.

Thus, by Theorem 3.10.2, the zero solution of Equation (??) is unstable.

3. We prove this part by using the following example.

Example 1.11.1 1. Consider the system

x1(n + 1) = x1(n) + x2
2(n) + x2

1(n)

x2(n + 1) = x2(n).

The linear part has the matrix

A =

 1 0

0 1


with ρ(A) = 1. To determine the stability of the origin we use the Liapunov function V(X) = x1 + x2. Then, V is

not positive and

∆V(X(n)) = x2
1(n) + x2

2(n) > 0 if (x1, x2) , (0, 0).

43



1.11. STABILITY VIA LINEARIZATION

Hence, by Theorem 3.10.2, the origin is unstable.

2. Let us now consider the system

x1(n + 1) = x1(n) − x3
1(n)x2

2(n)

x2(n + 1) = x2(n)

with the linear part as in (a). This time we use the Liapunov function V(X) = x2
1 + x2

2. Then

∆V(X(n)) = x4
1(n)x2

2(n)
[
−2 + x2

1(n)x2
2(n)

]
.

Hence, ∆V ≤ 0 if x2
1x2

2 < 2. Thus, the origin is stable by Theorem 3.7.1.

Example 4.11

(Pielou Logistic Delay Equation). One of the most popular continuous models for the growth of a

population is the well-known Verhulst-Pearl differential equation given by

x′(t) = x(t)[a − bx(t)], a, b > 0

where x(t) is the size of the population at time t, x′(t) = dx
dt , a is the rate of growth of the population if

the resources were unlimited and the individuals did not affect one another, and −bx2(t) represents the

negative effect on the growth of the population due to crowdedness and limited resources. The solution

to this equation may be obtained by separation of variables x and t, and then integrating both sides.

Hence,

x(t) =
a/b

1 + (e−at/cb)
.

This implies that

x(t + 1) =
a/b

1 +
(
e−a(t+1)/cb

)
=

(a/b)ea

1 + (e−at/cb) + (ea − 1)
.

Dividing by the quantity
[
1 +

(
e−at/cb

)]
both the numerator and the denominator on the right-hand

side we obtain

x(t + 1) =
eax(t)

1 + b
a (ea − 1) x(t)

or

x(t + 1) =
αx(t)

1 + βx(t)
.

This equation is called the Pielou logistic equation. Now, if we assume that there is a delay of time

period 1 in the response of the growth rate per individual to density change, then we obtain the difference

equation (replace t by n )

x(n + 1) =
αx(n)

1 + βx(n − 1)
. (1.62)

44



1.11. STABILITY VIA LINEARIZATION

As an example of a population that can be modeled by Equation (??) is the blowfly (Lucilia cuprina).

We now write Equation (??) in system form. Let x1(n) = x(n − 1), and x2(n) = x(n). Then,

 x1(n + 1)

x2(n + 1)

 =

 x2(n)
αx2(n)

1−βx1(n)

 =

 f1(x1, x2)

f2(x1, x2)

 (1.63)

There are two fixed points

 0

0

 and

 (α − 1)/β

(α − 1)/β

.

1. The fixed point Z∗1 =

 0

0

. Here,

A = D f (0) =

 0 1

0 α


with eigenvalues 0 and α. Since α > 1, the origin is unstable by Theorem 3.11.1.

2. The fixed point Z∗2 =

 (α − 1)/β

(α − 1)/β

. In this case,

A = D f
(
z∗2

)
=

 0 1
1−α
α 1

 .
By Theorem 3.11.1 , ρ(A) < 1 if and only if

| tr A| < 1 + det A < 2

if and only if

1 < 1 +
α − 1
α

< 2
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if and only if

0 <
α − 1
α

< 1

Clearly this is satisfied if α > 1. Hence, by Theorem 4.11, z∗2 is asymptotically stable (see Fig. 4.13).

1.11.1 The Hartman-Grobman Theorem

Similar to the one-dimensional case, we say a fixed point x∗ of a planar map f is hyperbolic if |λ| , 1,

for all eigenvalues of A = D f (x∗). Theorem 3.11.1 has given us almost complete information about the

stability of hyperbolic fixed points.

An extension of this result to periodic points is straightforward and will be left to the reader. In

proving Theorem 3.11.1, we have relied heavily on Liapunov function techniques. One may arrive at the

same conclusion by looking at matters through conjugacy. This is the essence of the so-called Hartman-

Grobman theorem, which roughly states that near a hyperbolic fixed point, a map is conjugate to the

linear map induced by its derivative at the fixed point. But this comes with a price, we require the map

f to be C1 diffeomorphism, that is a homeomorphism such that f , f ′, and their inverses are continuously

differentiable.

Theorem 1.11.2 (Hartman-Grobman Theorem).

Let f : R2
→ R2 be a C1 diffeomorphism with a hyperbolic fixed point X∗. Then there exist open neighborhoods

G of X∗ and H of the origin and a homeomorphism h : H → G such that f (h(X)) = h(AX) for all X ∈ H, where

A = D f (X∗).

In fact, Hartman showed that the conjugacy map h is C1 if f is C2. As a corollary of the Hartman-Grobman

theorem, one may easily establish Theorem 3.11.1

1.11.2 The Stable Manifold Theorem

Finally, our discussion of the stability of nonlinear maps will not be complete without the stable manifold

theorem. Roughly speaking, this theorem states that if the origin is a saddle under the linear map induced

by the derivative of a planar map f , then under f the origin exhibits a saddle-like behavior.

An accurate statement of the theorem now follows. However, its proof, is omitted and the interested

reader is referred to [25, 85]. Here we assume that the eigenvalues of A = D f (X∗) are |λ1| < 1 and |λ2| > 1

with corresponding eigenvectors V1 and V2.

Theorem 1.11.3 (The Stable Manifold Theorem).

Let X∗ be a hyperbolic fixed point of a C1 map f : G ⊂ R2
→ R2. Then there exists ε > 0 and C1 curves

γ1 : (−ε, ε)→ R2 and γ2 : (−ε, ε)→ R2 such that

1. γ1(0) = γ2(0) = X∗.

2. γ′1(0) = V1, and γ′2(0) = V2.
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3. If Q = γ1(t), then f n(Q)→ X∗ as n→∞.

4. If Q ∈ γ2(t), then f−n(Q)→ X∗ as n→∞.

The curve γ1 is called the stable manifold and is usually denoted by W∗ (X∗); likewise the curve γ2 is

called the unstable manifold and is denoted by W′u (X∗). Note that for the linear map A = D f (X∗), the

stable manifold is the line in the direction of the eigenvector V1, whereas the unstable manifold is the

line in the direction of the eigenvector V2. Moreover, at the origin, the stable

(unstable) manifold of the map f is tangent to the eigenvector V1(V2) (see Fig. 4.14)
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