Mila University Center

Academic Year 2024/2025

Institute of Mathematics and Computer ScienceField: MI-Mathematics $(1^{st}$ Year)Analysis IExercise Series N°01Semester I

Exercise 1:

Let $A, B \subset \mathbb{R}$ be two non-empty bounded sets. We define: $-A = \{-x \mid x \in A\}$.

1) Show that: $\sup(-A) = -\inf(A)$ and $\inf(-A) = -\sup(A)$

- 2) Show that if for all $a \in A$ and $b \in B$ we have $a \leq b$, then $\sup A \leq \inf B$.
- 3) Prove that $A \cup B$ is a bounded subset of \mathbb{R} and

a) $\sup(A \cup B) = \max(\sup A, \sup B).$

b)
$$\inf(A \cup B) = \min(\inf A, \inf B)$$
. (*)

4) Prove that if $A + B = \{z = x + y; x \in A, y \in B\}$ and $A - B = \{z = x - y; x \in A, y \in B\}$ then: a) $\sup(A + B) = \sup A + \sup B$.

b)
$$\inf(A+B) = \inf A + \inf B$$
.

c)
$$\sup (A - B) = \sup A - \inf B.$$

d)
$$\inf(A - B) = \inf A - \sup B$$
. (*)

Exercise 2:

- 1) Show that if $r \in \mathbb{Q}$ and $x \notin \mathbb{Q}$ then $r + x \notin \mathbb{Q}$; and if $r \neq 0$ then $r.x \notin \mathbb{Q}$.
- 2) Prove that $\sqrt{2} \notin \mathbb{Q}$.

3) Assume that $\sqrt{2}$ and $\sqrt{3}$ are irrational. Show that $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.

4) Show that $\frac{\ln 3}{\ln 2}$ is irrational..

Exercice 3:

1) Prove that:

a)
$$|x+y| \le |x|+|y|, \quad \forall x, y \in \mathbb{R}.$$

b) $|x - y| \ge ||x| - |y||, \quad \forall x, y \in \mathbb{R}.$ (*)

Exercise 4:

Let A and B be two subsets of \mathbb{R} such that $B \subset A$. Show that:

1) A is bounded $\implies B$ is bounded.

2)
$$\inf(A) \le \inf(B)$$
 and $\sup(A) \ge \sup(B)$.

Exercise 5:

Let
$$A = \left\{ a_n \in \mathbb{R} / a_n = \frac{n+3}{\frac{n}{4}+1}; n \in \mathbb{N} \right\}$$
 and $B = \left\{ b_n \in \mathbb{R} / b_n = \frac{1}{n^2} + \frac{2}{n} + 4; n \in \mathbb{N}^* \right\}$
1) Prove that A and B are bounded in \mathbb{R} and that: $\sup(A) = \inf(B)$

1) Prove that A and B are bounded in \mathbb{R} and that: $\sup(A) = \inf(B)$.

2) Determine $\sup(B)$ and $\inf(A)$.

Exercise 6:

Determine the supremum and infimum, if they exist, of the sets:

$$A = \left\{ \sin(\frac{2n\pi}{7}); n \in \mathbb{Z} \right\} \quad ; \quad B = \left\{ \alpha x + \beta; \quad x \in [-2, 1], \quad \alpha \in \mathbb{R} \text{ and } \beta \in \mathbb{R} \right\} \quad ; \\ C = [0, 1] \cap \mathbb{Q} \quad ; \quad D = \left\{ \frac{n-1}{2n+1}, n \in \mathbb{N}^* \right\} \quad ; \quad F = \left\{ (-1)^n + \frac{1}{n}; n \in \mathbb{N}^* \right\}.$$

Exercise 7:

1) Express the following numbers in the form a + ib (where $a, b \in \mathbb{R}$): $z_1 = \frac{3+6i}{3-4i} \quad ; \quad z_2 = \frac{2}{1-i\sqrt{3}} \quad ; \quad z_3 = \left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i} \quad ; \quad z_4 = \frac{2+5i}{1-i} + \frac{2-5i}{1+i} \quad (*)$ 2) Solve the following equations in $z^{2} + z + 1 = 0$; $z^{6} = 1$; $z^{2} = \frac{1}{4}(-1+i)$ (*) ; $z^{2} - \sqrt{3}z - i = 0$ (*).

Exercise 8:

Let z be a complex number with modulus ρ and argument θ , and let \overline{z} be its conjugate.

Calculate the expression $(z + \overline{z})(z^2 + \overline{z}^2) \dots (z^n + \overline{z}^n)$ in terms of ρ and θ .

Application:

Let α and $\overline{\alpha}$ be the solutions of the equation $z^2 - 2z + 2 = 0$.

- Find the trigonometric form of α and $\overline{\alpha}$.
- Show that: $\prod_{k=1}^{n} (\alpha^k + \overline{\alpha}^k) = 0; \quad \forall n \ge 2.$

Exercise 9:

1) Let $z \in \mathbb{C}$, Calculate the sum:

$$S_n = 1 + z + z^2 + \dots + z^n.$$

- 2) Solve the equation $z^n = 1$ in \mathbb{C} .
 - Show that the roots can be expressed in the form 1; α ; α^2 ;; α^{n-1} .
 - Deduce the roots of the equation:

$$P(z) = 1 + z + z^{2} + \dots + z^{n-1} = 0.$$

3) Calculate for $p \in \mathbb{N}$;

$$Q(z) = 1 + z^p + z^{2p} + \dots + z^{(n-1)p}.$$

Exercise 10:

1) Calculate the sum: $S(x) = \sum_{n=0}^{n-1} e^{ipx}; p \in \mathbb{N}, x \in \mathbb{R}.$

2) Deduce the following sums:

$$S_1(x) = \sum_{p=0}^{n-1} \cos(px)$$
 (*) ; $S_2(x) = \sum_{p=0}^{n-1} \sin(px)$ (*).

 $N\ B$: The exercises (*) are left to the students.