
Tables of contents

1 Field of real numbers 3

1.1 De�nition and usual properties of the �eld of real numbers . . . . . . . . . 3

1.2 Newton�s binomial formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Intervals of R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Completed number line R (Extension of R) . . . . . . . . . . . . . . . . . . 6

1.5 Operations on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Indeterminate forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Bounded subset, upper and lower bounds . . . . . . . . . . . . . . . . . . . 6

1.7.1 Supremum and in�mum . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7.2 Upper bound and lower bound characteristic properties . . . . . . . 8

1.7.3 Maximal and minimal elements . . . . . . . . . . . . . . . . . . . . 8

1.8 Archimedes axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 Rational and irrational numbers . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9.1 Density of Q in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.10 Absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.11 Integer part of a real number . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Field of complex numbers 13

2.1 De�nitions and general notions . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Module of a complex number . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Argument of a complex number . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Tregonometric form of a complex number . . . . . . . . . . . . . . . . . . . 14

2.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



2.6 n� th roots of a complex number . . . . . . . . . . . . . . . . . . . . . . . 16

2



Chapter 1

Field of real numbers

1.1 De�nition and usual properties of the �eld of

real numbers

De�nition 1.1.1 The �eld of real numbers (R;+;�;�) is the set of real numbers under
the two operations of addition and multiplication, with an ordering � compatible with the
ring structure of R:

The �eld of real numbers R has the following usual properties

1. R is a commutative �eld; i.e

1.1. Addition and multiplication are both commutative, which means that

x+ y = y + x and x� y = y � x; for every real numbers x and y:

1.2. Addition and multiplication are both associative, which means that

(x+ y)+z = x+(y + z) and (x� y)�z = x�(y � z) ; for every real numbers x, y and z:

1.3. There is a real number called zero and denoted 0 which is an additive identity,

which means that

x+ 0 = 0 + x = x; for every real number x:
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1.4. There is a real number denoted 1 which is a multiplicative identity, which

means that

1� x = x� 1 = x; for every real number x:

1.5. Every real number a has an additive inverse denoted �x. This means that

x+ (�x) = 0; for every real number x:

1.6. Every nonzero real number a has a multiplicative inverse denoted x�1 or
1

x
:

This means that

x� x�1 = 1; for every nonzero real number x:

1.7. Multiplication is distributive over addition, which means that

x� (y + z) = x� y + x� z; for every real numbers x; y and z:

2. The �eld R is ordered, meaning that there is a total order � such that
2.1. Re�exive relationship; i.e x � x; for every real number x:
2.2. Antisymmetric relationship; i.e x � y ^ y � x =) x = y; for every real

numbers x and y:

2.3. Transitive relationship x � y ^ y � z =) x � z; for every real numbers x, y
and z:

3. Many other properties can be deduced from the above ones. In particular

3.1. For all x; y 2 R;x � 0 ^ y � 0 =) x:y � 0:
3.2. For all x; y 2 R; (x � y) or (y � x) :
3.3. For all x; y; z 2 R;x � y =) x+ z � y + z:

3.4. For all n;m 2 N and for all x 2 R+ :

8><>:
x � 1 and n � m =) xn � xm:

x � 1 and n � m =) xn � xm:

3.5. For all x; y 2 R� :

8>>>>>><>>>>>>:

0 < x � y () 0 <
1

y
� 1

x
:

x � y < 0 () 1

y
� 1

x
< 0:

x < 0 < y () 1

x
< 0 <

1

y
:
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1.2 Newton�s binomial formula

Proposition 1.2.1 Let x and y be two real numbers and n be a non-zero natural number.

The Newton�s binomial formula is given by

(x+ y)n =

nX
k=0

Cknx
kyn�k where Ckn =

n!

k! (n� k)! , 1! = 1 and 0! = 1:

Notation 1.2.1 :

R� = R� f0g ; R�+ = fx 2 R; x > 0g ; R�� = fx 2 R; x < 0g :

R+ = fx 2 R; x � 0g ; R� = fx 2 R; x � 0g :

1.3 Intervals of R

Let a; b 2 R be two real numbers, such that a < b: The only intervals of R are

1. R = ]�1;+1[ :

2. � : the empty set.

3. [a; b] = fx 2 R; a � x � bg :

4. ]a; b[ = fx 2 R; a < x < bg :

5. ]a; b] = fx 2 R; a < x � bg :

6. [a; b[ = fx 2 R; a � x < bg :

7. [a;+1[ = fx 2 R;x � ag :

8. ]a;+1[ = fx 2 R; x > ag :

9. ]�1; b] = fx 2 R; x � bg :

10. ]�1; b[ = fx 2 R; x < bg :
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1.4 Completed number line R (Extension of R)

De�nition 1.4.1 We call the completed number line R the set R [ f�1;+1g :

1.5 Operations on R

1. (+1) + (+1) = +1 and (�1) + (�1) = �1:

2. For all x 2 R; we have x+ (+1) = +1 and x+ (�1) = �1:

3. (+1)� (+1) = +1; (�1)� (�1) = +1; (+1)� (�1) = �1:

4. For all x 2 R��; we have x� (+1) = �1 and x� (�1) = +1:

5. For all x 2 R�+; we have x� (+1) = +1 and x� (�1) = �1:

1.6 Indeterminate forms

It may often be possible to simply add, subtract, multiply, divide or exponentiate

the corresponding limits of two functions. However, there are occasions where it is

unclear what the sum, di¤erence, product or power of these two limits ought to be.

For example, it is unclear what the following expressions ought to evaluate to

0

0
;
1
1 ; 0�1; (+1) + (�1) :

1.7 Bounded subset, upper and lower bounds

1. A non-empty subset A (A � R) is said to be bounded above if:

9M 2 R;8x 2 A;x �M:

In this case, the numbre M is called an upper bound of A; i.e.

M 2 R is an upper bound of A() 8x 2 A; x �M:
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2. A non-empty subset A (A � R) is said to be bounded below if:

9m 2 R;8x 2 A;x � m:

In this case, the numbre m is called a lower bound of A; i.e.

m 2 R is a lower bound of A() 8x 2 A; x � m:

3. A non-empty subset A (A � R) is said to be bounded if and only if it is bounded above
and below ; i.e.

A � R is bounded() 9m;M 2 R;8x 2 A; m � x �M:

4. A non-empty subset A (A � R) that is not bounded is said to be unbounded.

1.7.1 Supremum and in�mum

1. Let A � R be bounded above. The supremum of A (abreviated supA) is the least

upper bound of A that is greater than or equal to each element of A (i.e 8x 2 A;
supA > x):

2. Let A � R be bounded below. The in�mum of A (abreviated inf A) is the greatest

lower bound of A that is less than or equal to each element of A (i.e 8x 2 A;
inf A � x):

1. Any nonempty subset A of R and bounded above admits an least upper bound (supA).

2. Any nonempty subset A of R and bounded below admits a greatest lower bound

(inf A).

Remark 1.7.1 Denote A = fx 2 R;x 2 Ag and �A = fx 2 R;�x 2 Ag : We have

sup(A) =M () inf (�A) = �M
() inf(�A) = � sup(A)
() sup(�A) = � inf(A):

1. The upper bounds of A= ]�2; 8] is [8;+1[, thus supA = 8:
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2. The lower bounds of A= ]�2; 8] is ]�1;�2], thus inf A = �2:

3. The upper bounds of A = ]�1; 3] is [3;+1[, thus supA = 3 and inf A does not

exist.

4. The lower bounds of A = ]1;+1[ is ]�1; 1], thus inf A = 1 and supA does not

exist.

1.7.2 Upper bound and lower bound characteristic properties

Theorem 1.7.1 Let A � R be non-empty and let M 2 R:

M = supA()

8<: 1) 8x 2 A; x �M;
2) 8" > 0; 9x 2 A;M � " < x:

Theorem 1.7.2 Let A � R be non-empty and let m 2 R:

m = inf A()

8<: 1) 8x 2 A; x � m;
2) 8" > 0; 9x 2 A; m+ " > x:

1.7.3 Maximal and minimal elements

De�nition 1.7.1 :

1. Let A � R be non-empty and let M 2 R be an upper bound of A, if M 2 A then we
say that M is maximal of A and we note maxA:

2. Let A � R be non-empty and let m 2 R be a lower bound of A, if m 2 A then we say
that m is minimal of A and we note minA

Remark 1.7.2 :

� If maxA exist, then supA exist and maxA = supA:

� If minA exist, then inf A exist and minA = inf A:

� If supA exist and supA =2 A, then maxA does not exist.

� If inf A exist and inf A =2 A, then minA does not exist.
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Example 1.7.1 :

1) Let A = ]�1; 3] : We have supA = 3 and 3 2 A; then maxA = 3:

2) Let A = [�1;+1[. We have inf A = �1 and �1 2 A, then minA = �1:

3) A = ]�2; 5[ : We have supA = 5 =2 A and inf A = �2 =2 A, then minA and maxA do
not exist

1.8 Archimedes axiom

For all x 2 R; it exist n 2 N such that n > x; (i.e. the set N is not bounded from above

in R).

1.9 Rational and irrational numbers

De�nition 1.9.1 We note by Q =
na
b
; a 2 Z , b 2 Z�

o
and Q� = Q�f0g : The elements

of Q are called rational numbers

� The set Q which contains Z; is stable for the + and � laws:

� Provided with the restrictions of these laws; it is itself a commutative �eld.

� In particular the inverse of any element of Q� is still in Q�:

De�nition 1.9.2 The elemnts of RnQ are called irrational numbers.

1.9.1 Density of Q in R

Theorem 1.9.1 Let x; y be two real numbers, such that x < y; there exists a rational

number q 2 Q, such that x < q < y; i.e. between two real numbers there is always a

rational number. We translate this property by saying that Q is dense in R.
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1.10 Absolute value

De�nition 1.10.1 We call absolute value of a real number x any application jxj : R �!
R+ de�ned by

jxj =

8<: x if x � 0
�x if x � 0;

which satis�ed the following properties

1) jxj = 0, x = 0, for every real number x:

2) jx+ yj � jxj+ jyj, for every real numbers x and y:

3) jx� yj � jjxj � jyjj, for every real numbers x and y:

4) jx� yj = jxj � jyj, for every real numbers x and y:

1.11 Integer part of a real number

For all x 2 R there exists an unique integer (n 2 Z) noted E (x) (or [x]) which is
called integer part of x, satisfying:

8x 2 R; E (x) � x � E (x) + 1:

In other wordsE(x) is the largest integer less than or equal to x (n � x � n+ 1;n 2 Z) :
Especially, if x 2 Z, then E (x) = x:

Example 1.11.1 :

E (0:3) = 0; (0 � 0:3 � 0 + 1 = 1) :
E (3:3) = 3; (3 � 3:3 � 3 + 1 = 4) :
E (�1:5) = �2; (�2 � �1:5 � �2 + 1 = �1) :
E (�4) = �4:
E (5) = 5:

Let A =
�
xn =

1

2
+

n

2n+ 1
; n 2 N

�
:

10



1. Prouve that: 8xn 2 A;
1

2
� xn < 1:

2. Find inf(A) and sup(A).

3. Show that: sup(A) = 1.

1. We proue that
1

2
� xn < 1; 8n 2 N:

We have 8n 2 N; xn =
1

2
+

n

2n+ 1
: So

8n 2 N; 0 � 2n < 2n+ 1; () 0 � 2n

2n+ 1
< 1;8n 2 N

() 0 � n

2n+ 1
<
1

2
;8n 2 N

() 1

2
� 1

2
+

2n

2n+ 1
< 1;8n 2 N

then
1

2
� xn < 1;8n 2 N:

2. Since
1

2
� xn < 1, then A is bounded; i.e. inf A and supA exist.

x0 =
1

2
is the a lower bound of A and x0 =

1

2
2 A, thus minA = 1

2
, this means

that inf A =
1

2
:

And 1 is the least upper bound of A, so supA = 1:

3. We will now show that supA = 1: To do this, we must check the second property

of supremum of the set A:

Let xn =
1

2
+

n

2n+ 1
> 1� " and we �nd n as a function of ":
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We have

xn =
1

2
+

n

2n+ 1
> 1� " =) �1

2
+

n

2n+ 1
> �"

=) 1

2
� n

2n+ 1
< "

=) 2n+ 1� 2n
2 (2n+ 1)

< "

=) 1

2 (2n+ 1)
< "

=) 1

2n+ 1
< 2"

=) 2n+ 1 >
1

2"

=) 2n >
1

2"
� 1

=) n >
1

4"
� 1
2

thus

9n = E
�
1

4"
� 1
2

�
+ 1; such that xn > 1� ";

which implies that supA = 1:
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Chapter 2

Field of complex numbers

2.1 De�nitions and general notions

The set of complex numbers C is written in the form

C = z = x+ iy; x; y 2 R; i2 = �1;

wher x = Re(z) is the real part of z and y = Im(z)is its imaginary part.

If y = 0, z is said to be real., and ¤ x = 0, z is said to be imaginary.

Example 2.1.1 :

1 + 3i ,
p
2� �i , 4 , i ,

p
6i ,

2

3
i , 1� 4

3
i

2. Let z = x + iy be a complex nuber. The number z = x� iy is called the conjugate of
z:

We have the following properties

z + z0 = z + z0; z:z0 = z:z0; z � z = 2yi;
z � z = 2x z = z:

2.2 Module of a complex number

3. We call module of a complex number z the positive real number jzj de�ned by
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jzj =
p
z:z =

p
x2 + y2:

The number jzj atis�es the following properties. For all z; z0 2 C , we have

a) jzj � 0; and jzj = 0, z = 0:

b) jz:z0j = jzj : jz0j :

c) jz + z0j � jzj+ jz0j :

d)
��� z
z0

��� = jzj
jz0j ; z

0 6= 0:

e)
����1z
���� = 1

jzj ; z 6= 0:

2.3 Argument of a complex number

Let z = x+ iy be a nonzero complex numbers:On appelle argument de z le nombre réel

� dé�ni d�un multiple entier de 2� près par.

cos � =
x

jzj ; sin � =
y

jzj on note � = arg (z) :

i.e: arg (z) = cos � =
x

jzjsin � =
y

jzj
Proposition 2.3.1 :

Let z1 and z2 be two complex numbers. We have

� arg (z1 � z2) = arg (z1) + arg (z2) :

� arg
�
z1
z2

�
= arg (z1)� arg (z2) :

2.4 Tregonometric form of a complex number

Let z = x+ iy; jzj =
p
x2 + y2 and � = arg (z) :

We have x = jzj cos �; y = jzj sin �: Thus

z = x+ iy = jzj cos � + i jzj sin �

= jzj (cos � + i sin �)

14



:

The number z is entirely determined by its modulus and its argument. The trigono-

metric form of z is then given by

z = [jzj ; �] = jzj (cos � + i sin �)

= jzj ei�:

This representation is very useful for multiplication and division of complex num-

bers; i.e

z1 � z2 = jz1j ei�1 � jz2j ei�2

= jz1j � jz2j ei(�1+�2):

and

z1
z2

=
jz1j ei�1
jz2j ei�2

=
jz1j
jz2j

ei(�1��2):

As an immediate application, we have the following relation (Moivre�s formula)

�
ei�
�n
= ein� () (cos � + i sin �)n = cosn� + i sinn�;

where

cos � =
ei� + e�i�

2
; sin � =

ei� � e�i�
2i

; � 2 R:

2.5 Application

By expanding the Moivre�s formula using Newton�s binomial formula, and identifying

the real and imaginary parts of polynomials as a function of cos � and sin �, we ge

(cos � + i sin �)n =

nX
k=0

Ckn (cos �)
n�k (i sin �)k ;
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where Ckn =
n!

k! (n� k)! , C
n
n =

n!

n!0!
= 1 , C0n =

n!

0!n!
= 1 and 0! = 1: Thus

(cos � + i sin �)n = C0n (cos �)
n (i sin �)0 + C1n (cos �)

n�1 (i sin �)1 + :::+ Ckn (cos �)
n�k (i sin �)k

+:::+ Cnn (cos �)
0 (i sin �)n

Wich implies that

cosn� = (cos �)n � C2n (cos �)
n�2 (sin �)2 + C4n (cos �)

n�4 (sin �)4 + :::::::::::

sinn� = C1n (cos �)
n�1 (sin �)1 � C3n (cos �)

n�3 (sin �)3 + :::::::::::

So

(cos � + i sin �)n = cosn� + i sinn�:

� For n = 2; we have

(cos � + i sin �)2 =
2X
k=0

Ck2 (cos �)
2�k (i sin �)k

= C02 (cos �)
2 (i sin �)0 + C12 (cos �)

1 (i sin �)1

+C22 (cos �)
0 (i sin �)2

= C02 cos
2 � � C22 sin2 �| {z }
cos 2�

+ iC12 cos � sin �| {z }
sin 2�

= cos 2� + i sin 2�:

2.6 n� th roots of a complex number

Let z = r (cos � + i sin �) = r exp (i�)be a complex number and n an integer such that

n � 1:
We are looking for all the complex numbers w = � (cos � + i sin �) = � exp (i�) that

satisfywn = z. We have

�n exp (in�) = r exp (i�)

, �n = r and n� = � + 2k�; k 2 Z

, � = n
p
r and � =

�

n
+
2k�

n
; k 2 Z:
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Hence the n�th roots of z are

zk =
n
p
r

�
cos

�
�

n
+
2k�

n

�
+ i sin

�
�

n
+
2k�

n

��
; 0 � k � n� 1

Special case: the n� th roots of z = 1 are

zk = cos

�
2k�

n

�
+ i sin

�
2k�

n

�
; 0 � k � n� 1
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