MASS TRANSFER

1. INTRODUCTION

When a system contains two or more components (with concentrations of components vary from point to point), there is a natural tendency for mass to be transferred (**to minimize the concentration differences within a system**).

The transport of one constituent **from a region** of **higher concentration to** that of a **lower concentration** is called **mass transfer**.

Mass transfer is the net movement of a component in a mixture from one location to another location where the component exists at a different concentration.

2. TYPES OF MASS TRANSFER

Example 1: A drop of blue liquid dye is added to a cup of water – the dye molecules will diffuse slowly by molecular diffusion to all parts of the water.

a) Molecular Diffusion: Transfer of individual molecules through a fluid by random movement from high concentration to low concentration.

Example 2: To increase this rate of mixing of the dye, the liquid can be mechanically agitated by a spoon and convective mass transfer will occur.

Example 3: stirred the water to dissolve coffee during coffee making.

b) Convective Mass Transfer: Using mechanical force or action to increase the rate of molecular diffusion.

3. VELOCITY AND DIFFUSION FLUX:

The flux (flow rate): the quantity of matter that crosses a surface perpendicularly during a unit of time (1s).

Unit:

- (**kg/s**) for: **mass flow rate**.
- (**mol/s**) for: **molar flow rate**.

Flux density (**flow rate density**): the flux per unit area (1m²).

$$
flux density = \frac{Flux}{Area}
$$

Unit:

- (**kg/m².s**) for : **mass flow rate density**
- (**mol/m².s**) for : **molar flow rate density**.

When it comes to mass transport, three types of flow rates are defined:

- The volumetric flow rate is the volume per unit of time; $[L.s^{-1}]$.
- The molar flow rate is the number of moles per unit of time; $[mol.s⁻¹]$.
- The mass flow rate is the number of grams per unit of time; $[kg.s^{-1}]$.

Mass transfer flux ≈ flux related to molecular diffusion + flux related to convection mass transfer

3.1. Mass Transfer Flux

4. MOLECULAR DEFFUSION:

Diffusion depends on:

- 1. Driving force (ΔC), moles per unit volume (kmol/m³).
- 2. The distance in the direction of transfer (Δz) , meter (m).
- 3. Diffusivity coefficient, unit area per unit time (m^2/s) .

Fick's Law of diffusion:

$$
J_A = -D_{AB} \frac{dC_A}{d_z}
$$

Where:

 J_A : is the molecular diffusion flux of A, (moles per unit area per unit time) $kmol/m².s$

 C_A : is the concentration of A (moles of A per unit volume) kmol/m³.

DAB: is known as the diffusivity or diffusion coefficient for A in B (unit area per unit time) m^2/s

 z : is distance in the direction of transfer (m).

Diffusion with bulk of mass in motion:

Total diffusion = Molecular diffusion + Convection term

Convection term = Eddy diffusion = Molar flux due to convection

Convection term = Concentration . mass transfer velocity = C_A . V

Mass transfer velocity (V) =
$$
\frac{\text{Mass flux}}{\text{Concentration}} = \frac{N_A + N_B}{C_T} = \frac{\frac{\text{kmol}}{m^2 \cdot s}}{\frac{\text{kmol}}{m^3}} = \frac{m}{s}
$$

Total diffusion equation in the form of concentration (normally used for liquids):

$$
N_{A} = -D_{AB} \frac{dC_{A}}{d_{z}} + \frac{C_{A}}{C_{T}} (N_{A} + N_{B}) \dots \dots \dots \dots \dots \dots \dots \dots (3)
$$

Total diffusion equation in the form of partial pressure (normally used for gases):

Total diffusion equation in the form of mole fraction (used for gases and liquids):

$$
N_A = -\frac{D_{AB}P_T}{RT} \frac{dX_A}{d_z} + x_A (N_A + N_B) \dots \tag{4}
$$

If stagnant diffusion layer, then $N_B = 0$

$$
N_A = \frac{D_{AB}}{RT} \frac{P_T}{d_z} \operatorname{Ln} \left[\frac{P_T - P_{A_2}}{P_T - P_{A_1}} \right] \dots \tag{5}
$$