People's Democratic Republic Of Algeria MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH Abdelhafid Boussouf University Center - Mila Institute of Science & Technology Process Engineering Department

Introduction to Transport Phenomena

Course Notes

By: Dr. BOUTI Mohamed

Academic Year: 2023 - 2024

Chapter 3 Mass Transfer

REMINDER:

1. Mass Transfer:

Mass transfer is the net movement of a component in a mixture from one location to another location where the component exists at a **different concentration**.

2. Modes of mass transfer:

Diffusion:

Transfer of molecules by random motion from high concentration to low concentration.

Convection:

The use of mechanical force or action to increase the rate of molecular diffusion is convection.

3. Concentration profiles :

A concentration profile is a sketch that indicates the magnitude of the concentration as a function of position C = f(x). This sketch is often superimposed on a process to indicate where these changes occur.

This is analogous to a velocity profile for fluid flow.

Exercise: Concentration profile

Based on the molecular distribution below, draw the concentration profile of species A as a function of *x*:

Exercise: Quick questions

- 1. Mass transfer occurs because of gradient in what quantity?
 - a. temperature
 - b. pressure
 - c. fluid flow
 - d. concentration
- 2. The two main types of mass transfer are:
 - a. diffusion and conduction
 - b. convection and diffusion
 - c. radiation and convection
 - d. conduction and radiation

1. **DIFFUSION**

1.1. Describing diffusion quantitatively

Exercise: Diffusion

Suppose we have molecule A diffusing in a domain between boundary 1 and boundary 2, where $C_{A,1}$ and $C_{A,2}$ are held fixed.

What happens to C_A between boundary 1 and boundary 2 and what is the rate of diffusional mass transfer (*moles/time*) across some area A? Note that A represents an area y by z into the figure.

1.2. Fick's law of diffusion

$$\dot{N}_{A,x} = - D_{AB} \, A \, rac{d c_A}{d x}$$

For a system in which there is pure diffusion only (no convection, no reactions, constant properties), the *concentration profile* is **linear**.

Thus, Fick's law can be approximated by

$$\dot{N}_{A,x} = -D_{AB}\,A\,\left(rac{c_{A,2}-c_{A,1}}{x_2-x_1}
ight) = -D_{AB}\,A\left(rac{\Delta c_A}{\Delta x}
ight)$$

Hence, the driving potential for diffusional mass transfer is: $C_{A,2}$ - $C_{A,1}$.

In the above equations,

Variable	Definition	Typical units
$\dot{N}_{A,x}$	moles of species A transferred per unit time from location 1 to location 2	mol/s
D_{AB}	the 'binary diffusivity' (or diffusion coefficient) of species A through medium B	m^2/s
A	the 'face' area through which transfer occurs	m^2
$c_{A,2}-c_{A,1}$	the difference in concentration between locations 2 and 1	$\mathrm{mol}/\mathrm{m}^3$
$x_2 - x_1$	the distance between locations 2 and 1	m

Exercise: Fick's law

Why is there a minus sign in Fick's law?

Response:

The negative sign of the equation indicates that diffusion occurs in a direction opposite to that of the increasing concentration. Hence, diffusion occurs in the direction of decreasing concentration of the diffusing substance, and thus, the diffusion flux is a positive quantity.

1.3. The diffusion coefficient :

One of the big unknowns in Fick's equation above is the diffusion coefficient, D_{AB} . The diffusion coefficient (or diffusivity) is **proportionality constant** between the molar flux due to molecular diffusion and the gradient in the concentration of the species (or the driving force for diffusion).

On a theoretical basis, the *diffusion coefficient* is proportional to the mean squared displacement divided by the time:

$$D \propto rac{\langle x^2
angle}{t}$$

Properties will influence the diffusion coefficient of molecule **A** in solution **B**: molecular size of **A** and/or **B**; molecular weight of **A** and/or **B**; temperature; pressure ...etc.

Exercise:

What are some typical values of diffusion coefficients? Which coefficients will be largest?

- Gases?
- Liquids?
- Solids?

Substance A	Substance B	<i>Т</i> , К	D _{AB} or D _{BA} , m ² /s	Substance A (Solute)	Substance <i>B</i> (Solvent)	<i>T</i> , K	<i>D_{AB}</i> , m ² /s	Substance A (Solute)	Substance B (Solvent)	<i>Т</i> , К	D.e. m²/s
		000	1.0	Ammonia	Water	285	1.6×10^{-9}	Cathon dioxide	Natural rubber	298	1 1 × 10-10
Argon, Ar	Nitrogen, N ₂	293	1.9×10^{-5}	Benzene	Water	293	1.0×10^{-9}	Nitrogen	Natural rubber	298	1.5×10^{-10}
Carbon dioxide, CO ₂	Benzene	318	$0.72 imes 10^{-5}$	Carbon dioxide	Water	298	2.0×10^{-9}	Oxygen	Natural rubber	298	2.1×10^{-10}
Carbon dioxide, CO ₂	Hydrogen, H ₂	273	5.5×10^{-5}	Chlorine	Water	285	1.4×10^{-9}	Helium	Pyrex	773	2.0×10^{-12}
Carbon dioxide, CO.	Nitrogen N.	293	1.6×10^{-5}	Ethanol	Water	283	$0.84 imes 10^{-9}$	Helium	Pyrex	293	4.5×10^{-15}
		233	1.0 × 10-5	Ethanol	Water	288	1.0×10^{-9}	Helium	Silicon dioxide	298	4.0×10^{-14}
Carbon dioxide, CO ₂	Oxygen, O_2	2/3	1.4×10^{-5}	Ethanol	Water	298	1.2×10^{-9}	Hydrogen	Iron	298	2.6×10^{-13}
Carbon dioxide, CO ₂	Water vapor	298	1.6×10^{-5}	Glucose	Water	298	$0.69 imes 10^{-9}$	Hydrogen	Nickel	358	1.2×10^{-12}
Hydrogen H.	Nitrogen No	273	6.8×10^{-5}	Hydrogen	Water	298	6.3×10^{-9}	Hydrogen	Nickel	438	1.0×10^{-11}
Hydrogen, Hy	Owners O	070	7.0 × 10-5	Methane	Water	275	$0.85 imes 10^{-9}$	Cadmium	Copper	293	2.7×10^{-19}
Hydrogen, H ₂	Oxygen, O_2	2/3	7.0 × 10 °	Methane	Water	293	1.5×10^{-9}	Zinc	Copper	773	4.0×10^{-18}
Oxygen, O ₂	Ammonia	293	2.5 × 10 ⁻⁵	Methane	Water	333	3.6×10^{-9}	Zinc	Copper	1273	5.0×10^{-13}
Oxygen, O ₂	Benzene	296	0.39×10^{-5}	Methanol	Water	288	1.3×10^{-9}	Antimony	Silver	293	3.5 × 10 ⁻²⁵
Owygon O	Nitrogon N	273	1.8×10^{-5}	Nitrogen	Water	298	2.6×10^{-9}	Bismuth	Lead	293	1.1×10^{-20}
Oxygen, O ₂	Nillogen, N ₂	275	1.0 × 10	Oxygen	Water	298	2.4×10^{-9}	Mercury	Lead	293	2.5×10^{-19}
Oxygen, O ₂	Water vapor	298	2.5×10^{-5}	Water	Ethanol	298	1.2×10^{-9}	Copper	Aluminum	773	4.0×10^{-14}
Water vapor	Argon, Ar	298	2.4×10^{-5}	Water	Ethylene glycol	298	$0.18 imes 10^{-9}$	Copper	Aluminum	1273	1.0×10^{-10}
Water vapor	Helium, He	298	9.2×10^{-5}	Water	Methanol	298	1.8×10^{-9}	Carbon	Iron (fcc)	773	5.0 × 10 ⁻¹⁵
Water vapor	Nitrogen, N ₂	298	2.5×10^{-5}	Chloroform	Methanol	288	2.1×10^{-9}	Carbon	Iron (TCC)	12/3	3.0 × 10-11

2. MASS CONVECTION :

Mass transfer by convection involves material transport between a boundary surface (such as a solid or liquid surface) and a moving fluid or between two relatively immiscible, moving fluids.

2.1. Newton's law of cooling

To quantify **the rate of mass transfer** owing to convection, we can use **Newton's law of cooling** (which also applies to *convective heat transfer*).

Newton's law of cooling for mass transfer:

$$\dot{N}_A = h_m \: A \: (c_{A,s} - c_{A,\infty})$$

Hence, the driving potential for convective mass transfer is: $C_{A,s}$ - $C_{A,\infty}$

In the above equations,

Variable	Definition	Typical units
$\dot{N}_{A,x}$	moles of species A transferred per unit time from the surface to the bulk fluid far from the surface	mol/s
h_m	the mass transfer coefficient	m/s
A	the area (cross section) through which transfer occurs	m^2
$c_{A,s}-c_{A,\infty}$	the difference in concentration between the surface and bulk fluid	$\mathrm{mol}/\mathrm{m}^3$