
[solution n°4 p. 33]

[solution n°5 p. 33]

C Arrays II

A series of variables ordered by index and treated as a single block is called indexed variables. These
variables can be of the same type to take the form of an array. An array, that contains character data-type
variables, is known as a string. Indexed variables with different data type are called a structure. This
chapter has extensively covered two types of indexed variables array and string. The structure it will be
discussed in the next chapter 2 p.36.

1. Objectives of the chapter

Recall the syntax for declaring arrays in C.

Remember the concept of array indexing and its starting index in C (0 or 1).

Understand how arrays are stored in memory and how elements are accessed using pointers.

Write C code to initialize arrays with predefined values.

Evaluate the performance of algorithms that use arrays for tasks such as searching or sorting
large datasets.

2. Required tribal gains

1. First, we should know the reason to use array in C. Why we need array in C?

2. Memory Management: Understand the basics of memory management in C, including stack vs.
heap memory, memory allocation/deallocation functions (malloc, calloc, realloc, free), and the
concept of memory leaks

3. Array Declaration: How to declare arrays in C.

3. Test of tribal gains

Quiz 1
What is an array in C?

 A single variable that can hold multiple values of different data types

 A collection of elements of the same data type stored under a single identifier

 A reserved keyword used to define functions

Quiz 2
How do you declare an array in C?

 int array[5];

 array = int[5];

13

[solution n°6 p. 34]

[solution n°7 p. 34]

Quiz 3
What is the index of the first element in an array in C?

 0

 1

Quiz 4
How do you access the third element of an array named numbers in C?

 numbers(3);

 numbers{2};

 numbers[2];

4. Definition

Definition

An array is a method to treat an ensemble of multiple variables with the same data-type as a one
class.

Each variable in the array represents an element in this array.

Each variable occupy a storage space in memory, and the storage space of all of the array
elements is called contiguous memory5 p.36 allocation.

Elements in array are ordered by index in which the 0th index refers to the first element in the
array.

5. Array declaration

Declaring an array is done in the following way

data_type array_name[array_size];

Data-type : is defined according to the data-type of the array elements.

Array-name: is chosen by the programmer and it is important and used to refer to the array
element.

Array size: is the number of elements in the declared array.

Array declaration Example

int arry[6];

int is the data type of the six elements in this array, and this statement can be pictured as follows

C Arrays

14

Vusialisation of array elements allocated in memory

Note

It is very important to note the following:

The array element is referred to by its name followed by an index placed between square
brackets.

The index of first element of the array is 0, and therefore always there is a difference of one
between the index of the last element and the size of the array.

6. Array initialization

The method of assigning an initial value to a variable is known as initialization. There are many ways to
initialize an array.

6.1. Initialization during declaration step

Syntax:

data_type array_name[array_size]={element 1, element 1, element 1,...};

Example

int x[6]={2, 4, 6, 8, 5, 1};

Note

In this case, it is not necessary to specify the size of the array and the initialization remains correct in
this way

int x[]={2, 4, 6, 8, 5, 1};

C Arrays

15

6.2. Initialization using loops

Example

Program Output

#include <stdio.h>

int main()

{

int i,x[6];

for(i=0;i<6;i++)

{

printf("Enter the element x[%d]:\n", i);

scanf("%d", &x[i]);

}

return 0;

}

Enter the element x[0]:

2

Enter the element x[1]:

4

Enter the element x[2]:

6

Enter the element x[3]:

8

Enter the element x[4]:

5

Enter the element x[5]:

1

7. Access array elements

Array elements are manipulated as variables, and index is the only difference between elements and
variables. The index requires an arrangement in memory to distinguish these elements from each
other. Therefore, the element can only be accessed through this index.

Access, here, means two things:

Using the value of the element

Dealing with the memory address of the element.

array_name[0] accesses the first element in the array, while array_name[1] accesses the second
element, etc.

Example

Program Output

#include <stdio.h>

int main()

{

int i,a,b=2, y[5]={5,b,1,4,6};

a=y[0];

printf("a=%d \n %d",a, y[1]);

return 0;

}

a=5

2

C Arrays

16

An opportunity presents itself here to demonstrate a straightforward method for assigning values to
elements of an array.

int arr[3] ;

arr[0]=5 ;

arr[1]=12 ;

arr[2]=16 ;

8. Input/output an element of array

To input the first and second elements of the array float arr[n], we just use scanf() function as
follows

scanf("%f%f", &arr[0], &arr[1]) ;

To output the first and the second elements of the last array we just use printf() function in this
way

printf("%f%f", arr[0], arr[1]) ;

9. Pointers in C

9.1. C Memory address

Definition

C memory address is the space required for storing a declared variable, or more appropriately, it is the
location of bytes occupied by the variable data (value) in the computer.

For example the statement int a=10 ; leads to :

1- A storage size with 4 bytes is reserved in the memory.

2- The value 10 of a is converted to binary as (10)10 =1010 and stored in the reserved memory of a as
follows

------ -----

Data storage of a

C Arrays

17

In a C program, the address memory is frequently presented, particularly when using the scanf()
function.

The statement scanf(%d, &b); means assigning a value to the address of b, which is referred to as
&b.

It should be noted that the address operator "& "can be used to access the memory address of a
variable.

9.2. Pointers in C

Definition

Pointers are variables that store the address of another variable as their values. In c, pointers it can be
created as follows :

Declaration : Pointer is declared in this way

pointer_data-type* pointer_name ;

The only difference between pointer and variable declarations is the astrisic (*).

Example :

int* p ;

This line means that a pointer is created but it points to a random adress memory. The declared
pointer keeps pointing to an existing and unknown address in memory, and if it is not specified,
a programming issue may arise. To this reason, a care should be done in pointers manipulation.

Initialization: the pointer is initialized by using address operator ʻ&ʼ as

int a=5, *pa ;

pa=&a ;

This indicates that the pointer pa has been assigned the address of a. Also, the stored value of a
is accessed using the dereference operator *.

Example

The following example will clarify everything that has been mentioned in this section.

Program Output

#include <stdio.h>

int main() {

int a=5, pa;

pa=&a;

printf("The value of
a=%d\n",a); printf("The
address of a: %p\n", &a);
printf("The value of
a=%d\n", pa); printf("The
address of a: %p", pa);
return 0; }

The value of a=5

The address of a=
0x7ffe665a0c14

The value of a=5

The address of a=
0x7ffe665a0c14

From this example, the importance of pointers also becomes clear, as they play two roles. On the one
hand, they store the address of the variable, and on the other hand, they can access the value of the
variable they pointed to. Even beyond that, the value of the variable it can be changed through its
pointer.

C Arrays

18

Example

Program Output

#include <stdio.h>

int main() {

 int a=5, *pa;

 pa=&a;

 printf("The value of a=%d\n",a);

 printf("The address of a: %p\n", &a);

 printf("The value of a=%d\n", *pa);

 printf("The address of a: %p", pa);

 return 0;

}

The value of a=5

The address of a=
0x7ffe665a0c14

The value of a=5

The address of a=
0x7ffe665a0c14

9.3. Pointers and functions:

Pointers are useful tools to deal with functions. It can be pointed to the function itself or it can be used
as a parameter to that function. In most cases pointers are used to pass addresses to function
parameters and this technique is called pass by reference. This it can be explored in the programs as
follows

Example

Program Output

#include <stdio.h>

void fg(int *q)

{

 printf("%p\n%d", q,*q);

}

int main() {

 int a=5, *p;

 p=&a;

 printf("%p\n",p);

 fg(p);

 return 0;

}

0x7ffd26425cf4

0x7ffd26425cf4

5

C Arrays

19

Example

Program Output

#include <stdio.h>

void swap(int *p1, int *p2)

{

 int temp;

 temp=*p1;

 *p1=*p2;

 *p2=temp;

 printf("x=%d\ny=%d\n",*p1,*p2);

}

int main() {

 int x=5,y=10;

 printf("The value of x and y before
swap\n");

 printf("x=%d\ny=%d\n", x, y);

 printf("The value of x and y a�er
swap\n");

 swap(&x,&y);

 return 0;

}

The value of x and y before
swap

x=5

y=10

The value of x and y a�er
swap

x=10

y=5

9.4. Pointers and arrays

The pointer of an array can be shown as a second array, and the elements of this array store the
addresses of the first array elements to which it points.

Example

Program Output

#include <stdio.h>

int main() {

 int i, j, a[4]={5,4,3,1};

 int* pa;

 pa=&a;

 printf("The address of a[] : %p\n\n", pa);

 printf("The addresses of array's elements:\n");

The address of a[] :
0x7ffe14beea20

The addresses of array's
elements:

a[0] : 0x7ffe14beea20

a[1] : 0x7ffe14beea24

a[2] : 0x7ffe14beea28

C Arrays

20

 for(i=0;i<4;i++)

 {

 printf("a[%d] : %p\n", i, pa+i);

 }

 printf("The values of array's elements:\n");

 for(j=0; j<4; j++)

 {

 printf("a[%d]=%d\n", j, *(pa+j));

 }

 return 0;

}

a[3] : 0x7ffe14beea2c

The values of array's
elements:

a[0]=5

a[1]=4

a[2]=3

a[3]=1

From the previous example, it can be noted that:

The address of array a[] corresponds to the address of a[0].

The addresses are shi�ed by 4, and this is due to the fact that each element with data-type
integer reserves 4 bytes in memory.

The method to access array elements is done in the same way as

a[0]=*pa=5,

a[1]=*(pa+1)=4,

a[2]=*(pa+2)=3,

a[3]=*(pa+3)=1

Pointers can only be used for one element in the array.

int c[]={1, 2, 3}, *pc;

pc=&c[1];

In this case the order becomes important, so pc+1 refers to the second element a�er c[1] and pc-1
refers to the second element before c[1].

Example

Program Output

#include <stdio.h>

int main() {

 int c[]={1, 2, 3}, *pc;

 pc=&c[1];

 printf("%d\n%d", *(pc-1), *
(pc+1));

}

1

3

C Arrays

21

Example

Here is a simple example of printing elements for every given array using a pointer, function, and an
array.

Program Output

##include <stdio.h>

void funcar(int *pa, int size)

 {

 int i;

 for(i=1; i<size; i++)

 {

 printf("a[%d]=%d\n", i, *(pa+i));

 }

 }

int main() {

 int b, a[]={4, 2, 3, 12, 51}, *p;

 p=&a;

 b=sizeof(a)/sizeof(a[0]);

 funcar(p,b);

 return 0;

}

a[1]=2

a[2]=3

a[3]=12

a[4]=51

In this chapter, we have delved into the intricate world of C pointers, one of the most powerful and
fundamental concepts in the C programming language. We began by understanding the basics of
pointers, including their declaration, initialization, and dereferencing. We then explored how pointers can
be used to manipulate memory directly.

10. Two dimensional array

10.1. Definition

Definition

The two dimensional array (2D array) it can be viewed as an array of arrays. The 2D array is required in
the case of stored data that takes tabular form or matrices6 p.36.

10.2. Declaration

Declaration of 2D array can be done by the following task

 data type array_name[x][y];

Example:

long M[2][3];

This statement can be represented as

C Arrays

22

 col 0 col 1 col 2

row 0 M[0][0] M[0][1] M[0][2]

row 1 M[1][0] M[1][1] M[1][2]

long: is the data type of the 2D array.

M: is the name of the 2D array.

2: between square brackets represents the number of rows in the 2D array.

3: is the number of columns in the 2D array.

10.3. Initializing 2D array

There are many ways to initialize a 2D array the simple one is the initialization during declaration as

float X[3][3]={1.2, 5, 10, 2, 4, 3, 6, 9, 7};

Or in equivalent way as

float X[3][3]={{1.2, 5, 10}, {2, 4, 3}, {6, 9, 7}};

The two statements can be visualized as follows

 col 0 col 1 col 2

row 0 X[0]
[0]=1.2

X[0]
[1]=5

X[0]
[2]=10

row 1 X[1]
[0]=2

X[1]
[1]=4

X[1]
[2]=3

row 2 X[2]
[0]=6

X[2]
[1]=9

X[2]
[2]=7

 To assign values to elements in 2D array the scanf() can be used as follows

int M[2][2];

scanf(“%d”, &M[0][0]);/* to enter the value of the first element in array M*/

10.4. Printing 2D arrays:

To print all elements of 2D array nested for loop is used as follows:

Program Output

#include <stdio.h>

int main() {

 int M[3][4]=
{1,2,3,7,2,4,5,8,3,5,6,9};

 int i, j;

 for(i=0;i<3;i++)

 {

1 2 3 7

2 4 5 8

3 5 6 9

C Arrays

23

 for(j=0;j<4;j++)

 {

 printf("%d ", M[i][j]);

 }

 printf("\n");

 }

 return 0;

}

10.5. Storage of 2D array

The elements of 2D array are stored in memory in a linear way in row-major order i.e. the rows are
placed one by one in memory as one dimensional array. The element of the 2D array int x[3][2]={1, 2, 2,
1, 1, 4}; it can be represented in this way

Element x[0][0] x[0][1] x[1][0] x[1][1] x[2][0] x[2][1]

Value 1 2 2 1 1 4

Address 2000 2004 2008 2012 2016 2020

row 0 row 1 row 2

Example

Program Output

#include <stdio.h>

int main() {

 int mat[3][2]={{1,2},{5,9},{7,9}};

 int i,j;

 int* pt;

 pt=&mat[0][0];

 for(i=0;i<6;i++)

 printf("%p\n", pt+i);

return 0;

}

0x7ffe872ca670

0x7ffe872ca674

0x7ffe872ca678

0x7ffe872ca67c

0x7ffe872ca680

0x7ffe872ca684

C Arrays

24

10.6. Length of 2D array

The total number of elements in 2D array=number of rows ´ number of columns. For example the 2D
array int A[10][7] can store 10´7=70 elements. Each of element occupy a space of 4 bytes in memory,
and then the array has a storage space given with

 size of A[10][7] =70´4=280 bytes.

Example

Program Output

#include <stdio.h>

int main() {

 int mat[3][2]={{1,2},{5,9},{7,9}};

 int length;

 length=sizeof(mat)/sizeof(mat[0][0]);

 printf("length=%d", length);

return 0;

}

length=6

10.7. Some operations on 2D arrays

C program to find 0th column and 0th row of 2D array: Example

Program Output

#include <stdio.h>

int main()

{

 int a[3][3]={{4,3,2},{5,4,1},{6,9,8}};

 int i, j;

 printf("elements of 0-column:\n");

 for(i=0;i<3;i++)

 {

 printf("%d\n", a[i][0]);

 }

 printf("\n----------------------\n");

 printf("elements of 0-row:\n");

 for(j=0;j<3;j++)

 {

 printf("%d\t", a[0][j]);

 }

 return 0;

}

elements of 0-column:

4

5

6

elements of 0-row:

4 3 2

C Arrays

25

Program to find the position of an element in 2D array Example

Program Output

#include <stdio.h>

int main()

{

 int b[4][4]={{6,4,3,2},{10,5,4,1},{4,6,9,8},
{9,8,7,12}};

 int i, j, a, c=0;

 printf("Enter the number you are looking
for:\n");

 scanf("%d", &a);

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 if(a==b[i][j])

 {

 printf("The number position is (%d,
%d)\n", i, j);

 c++;

 }

 }

 }

 if(c==0)

 {

 printf("Not found");

 }

 return 0;

}

Enter the number you are looking
for:

4

The number position is (0, 1)

The number position is (1, 2)

The number position is (2, 0)

C program to solve a system of equations with two variables using matrices: Example

a-The form of a system of equation can be written as

a1x + b1y = c1a2x + b2y = c2

The theoretical solution of this system of equations is given by

x = ∣c1 b1

c2 b2∣∣a1 b1

a2 b2∣C Arrays

26

y =

Where = a1b2 − a2b1 is the determinant of the matrix.

b- Next, we will write the C program that finds a solution of the following system of equations

2x + 4y = 1x + 3y = 2

Program Output

#include <stdio.h>

float determinanat(float a[2][2])

{ float det;

 det=a[0][0]*a[1][1]-a[1][0]*a[0][1];

 return det;}

int main(){

 float b[2][2];

 float b1[2][2];

 float b2[2][2];

 int i,j,k,l;

 printf("Enter the elements of the matrix\n");

 for(i=0;i<2;i++)

 {

 for(j=0;j<2;j++)

 {

 scanf("%f",&b[i][j]);

 }

 }

 for(k=0;k<2;k++)

 {

 for(l=0;l<2;l++)

 {

 b1[k][l]=b[k][l];

 b2[k][l]=b[k][l];

 }}

 float c1=1, c2=2, x, y, d, z1, z2;

 d=determinanat(b);

 printf("d=%f\n", d);

 b1[0][0]=c1;

Enter the elements of the matrix

2

4

1

3

d=2.000000

x=-2.500000

y=1.500000

solutions substitutions

z1=0.000000

z2=0.000000

∣a1 c1

a2 c2∣∣a1 b1

a2 b2∣∣a1 b1

a2 b2∣ C Arrays

27

 b1[1][0]=c2;

 b2[0][1]=c1;

 b2[1][1]=c2;

 x=determinanat(b1)/d;

 y=determinanat(b2)/d;

 printf("x=%f\ny=%f\n", x, y);

 printf("solutions substitutions\n");

 z1=2*x+4*y-1;

 z2=x+3*y-2;

 printf("z1=%f\nz2=%f", z1, z2);

 return 0;}

In conclusion, arrays are fundamental data structures in the C programming language that allow us to
store multiple elements of the same data type under a single identifier. Throughout this chapter, we've
explored the various aspects of arrays, starting from their declaration and initialization to accessing
elements and performing operations on them.

C Arrays

28

Series of exercises III

You will find in the link some exercises related to the subject

https://drive.google.com/file/d/1kVF9APhBRdzrr0qDhF_PDKeDdamNtk8h/view?usp=sharing

29

	C Arrays
	Objectives of the chapter
	Required tribal gains
	Test of tribal gains
	Quizsolution
	Quizsolution
	Quizsolution
	Quizsolution

	Definition
	Array declaration
	Array initialization
	Initialization during declaration step
	Initialization using loops

	Access array elements
	Input/output an element of array
	Pointers in C
	C Memory address
	Pointers in C
	Pointers and functions:
	Pointers and arrays

	Two dimensional array
	Definition
	Declaration
	Initializing 2D array
	Printing 2D arrays:
	Storage of 2D array
	Length of 2D array
	Some operations on 2D arrays

	Series of exercises

