University Center Abdelhafid Boussouf Mila Institute of Mathematics and Computer Science 1st Year Mathematics (Algebra 1)

Series of Tutorial No. 1 Logic concepts

Exercise 1.

Which of the following sentences are propositions? What are the truth values of those that are propositions?

- 1. Paris is in France or Madrid is in China.
- 2. Open the door.
- 3. The moon is a satellite of the Earth.
- 4. x + 5 = 7.
- 5. x + 5 > 9 for every real number x.

Exercise 2.

Determine whether each of the following implications is true or false.

- 1. If 0.5 is an integer, then 1 + 0.5 = 3.
- 2. If 5 > 2, then cats can fly.
- 3. If $3 \times 5 = 15$, then 1 + 2 = 3.
- 4. For any real $x \in \mathbb{R}$, if $x \leq 0$, then (x-1) < 0.

Exercise 3.

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function. Negate the following propositions:

- 1. $\exists x \in \mathbb{R} \text{ such that } f(x) = 0.$
- 2. $\exists M > 0$ such that $\forall A > 0$, $\exists x \geq A$ with $f(x) \leq M$.
- 3. $\exists x \in \mathbb{R} \text{ such that } f(x) > 0 \text{ and } x > 0.$
- 4. $\forall \epsilon > 0, \exists \eta > 0, \forall (x, y) \in I^2, (|x y| \le \eta \Rightarrow |f(x) f(y)| > \epsilon).$

Exercise 4.

Consider the statement "for all integers a and b, if a + b is even, then a and b are even":

- 1. Write the contrapositive of the statement.
- 2. Write the converse of the statement.
- 3. Write the negation of the statement.
- 4. Is the original statement true or false? Prove your answer.
- 5. Is the contrapositive of the original statement true or false? Prove your answer.
- 6. Is the converse of the original statement true or false? Prove your answer.

7. Is the negation of the original statement true or false? Prove your answer.

Exercise 5. (Direct Proof)

- 1. Prove that if n is an even integer, then n^2 is also an even integer.
- 2. Prove that for all integers a and b, if a + b is even, then both a and b are even.

Exercise 6. (Proof by Contradiction)

Prove that $\sqrt{2}$ is irrational.

Exercise 7. (Proof by Contrapositive)

- 1. Prove that if n^2 is an even integer, then n is also an even integer.
- 2. Prove that if a and b are integers and ab is odd, then both a and b are odd.

Exercise 8. (Proof by Mathematical Induction)

- 1. Prove that for all positive integers n, $1+3+5+\cdots+(2n-1)=n^2$.
- 2. Prove that for all positive integers $n, 2^n > n$.

Exercise 9. (Proof by Cases)

- 1. Prove that for all integers $n, n^2 \ge 0$.
- 2. Prove that for any integer n, n^3 is either even or odd.

Exercise 10. (Counterexample)

Prove that the following statement is false: "Every positive integer is the sum of three squares."