Department of Process Engineering

May 2024

Notions of Transport Phenomena Final Exam - correction

Closed Notes, Show All Work

Exercise 01 (08 Marks): "About heat transfer"

1-	There are: THREE (3) main ways of heat transfer.	0,25
	- Conduction HT;	0,25
	- Convection HT, and;	0,25
	- Radiation.	0,25

2- Fourier's law.

3-
$$q_x'' = -k \frac{dT}{dx}$$
 (heat flux) or, $q_x = -kA \frac{dT}{dx}$ (heat transfer rate)

The thermal conductivity of most solids varies with temperature. In general:

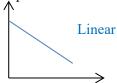
$$k = \frac{\vec{q}_x}{\partial T/\partial x}$$

Most materials are very nearly homogeneous, therefore we can usually write k = k (T).

As temperature increases, both the number of free electrons and lattice vibrations increase. However, the thermal conductivity of metals decreases slightly with increasing temperature.

Part 01:

4-
$$q_x'' = h. (T_s - T_{surr})$$
 (heat flux) or, $q_x = h. A. (T_s - T_{surr})$ (heat transfer rate) 1
5- $[h]: W/m^2.K$


6-
$$q_{conduction}^{"} = q_{convection}^{"}$$
 then, $-k \frac{dT}{dx} = .(T_s - T_{surr})$ so, $T_s = -k \frac{dT}{dx} + T_{surr}$...

Part 02:

$$q_{conduction}^{"} = q_{radiation}^{"}$$
 Then, $-k \frac{dT}{dx} = \sigma \cdot (T_s^4 - T_{surr}^4)$ so...

Exercise 02 (07 Marks): "About mass transfer"

- 1- Gradient of concentration: $\frac{dC}{dx}$
- 2- $J_{AB} = -D_{AB} \cdot \frac{dC}{dx}$; called: Fick's first law of diffusion
- 3- Concentration profile as function of (x):

- 4- The negative sign of the equation indicates that diffusion occurs in a direction opposite to that of the increasing concentration. Hence, diffusion occurs in the direction of decreasing concentration of the diffusing substance, and thus, the diffusion flux is a positive quantity.
- 5- If we change the spices (A) and (B) by two **gases**, the new rate of diffusional mass transfer increase.
- 6- There is two main types of mass transfer, the first one is molecular diffusion, and the second one is: convection mass transfer.

1

1

Abd El-Hafid Boussouf University Center – Mila Institute Of Sciences & Technology Department of Process Engineering

May 2024

Exercise 03 (05 Marks): "About momentum transfer"

The tank shown in figure 03 is half filled water.

1- Calculate the pressure difference between points **A** and **B**.

$$\Delta P_{AB} = \rho_{water}. g. h$$
 then, $\Delta P_{AB} = 10^3. 9,81. (\frac{1.6}{2})$, so $\Delta P_{AB} = 7.848 Pa$

 $0,25 \times 4$

2- Calculate the pressure difference between points **B** and **C**.

$$\Delta P_{BC} = \rho_{air}.g.h$$
 then, $\Delta P_{BC} = 1,3.9,81.(\frac{1,6}{2})$, so $\Delta P_{BC} = 10,2 Pa$

 $0,25 \times 4$

3- Compare these results.

$$\Delta P_{AB} \gg \Delta P_{BC}$$

(The pressure differential in water is much greater than in air.) This is due to the volumetric mass of matter.

1

Good Luck, Dr. BOUTI .M