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- A Markov chain describes a system whose state 
changes over time.
- The  future of the system depends  only to  its 
present state, and not to the path by which the
system go to this latter.
- A Markov chain is useful when we need to compute a 
probability for a sequence of observable events.
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 I. Markov  chain



- In many cases,  the events we are interested in 
are hidden.
- A hidden Markov model (HMM) allows us to talk 
about both observed events  and hidden events  
that we think of as causal factors in our 
probabilistic model.
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 II. Hidden markov model
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An HMM is specified by the following components:
 - s1, s2,…,sN : a set of N states.

 - A= [pij]n*n :  a transition probability matrix A, each aij representing the 
probability  of moving from state i to state j.

- O=o1o2...om a sequence of m observation symboles.

- B=[o/s]. emission probabilities, each expressing the probability of an 
observation o  being generated from a state i.

-π=π1, π2,…, πn an initial probability distribution over states.
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 II. 1 Definition
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III. Decoding 

Example : given the following observable sequence.

Coat coat umbrella.
The different pssible sequence will bee. 

Sunny sunny sunny, sunny rainy sunny, sunny foggy sunny,…... 

We have NT possible cases with N the  number of hidden states and T the size of the 
sequence.

P(s1,s2,s3/o1,o2,o3)=P(s1,s2,s3,o1,o2,o3)/p(01,02,03).

P(s1,s2,s3,o1,o2,o3)=P(o1/s1)*P(o2/s2)*P(o3/s3)*P(s1)*p12*p23.

P(S,O)=

S=Argmaxs’ ЄSTP(S’,O).
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∏
i=1

n

P(oi / si)π(s1) pi−1i



III. 1 Viterbi Algorithm

Viterbi is a kind of dynamic programming that  processes the observation sequence from 
left to right, filling out the cell.

Each cell  vt( j), represents the probability that the HMM is in state j after seeing the first t 
observations and passing through the most probable state sequence S1  , ..., S t−1  , given 
the automaton λ . 

The value of each cell vt(j) is computed by recursively taking the most probable path that 
could lead us to this cell.

 Formally, each cell expresses the probability 

v t( j) = max P(s 1 ...s t−1 , o 1 , o 2 . . . o t , s t = j)
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III. 1 Vitebi Algorithm

Note that we represent the most probable path by taking the maximum over all

possible previous state sequences max (s 1 ...s t−1 )

Like other dynamic programming algorithms, Viterbi fills each cell recursively.

For a given state S j at time t, the value vt( j) is computed as :

v t ( j) = maxn
i=1v t−1 (i) aij bj (ot ).
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III. 1 Viterbi Algorithm

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

      v 1 ( j) = π j b j (o 1 )      1 ≤ j ≤ N

      bt 1 ( j) = argmax v 1 ( j)                    1 ≤ j ≤ N

2. Recursion

      v t ( j) = max v t−1 (i) a i j b j (o t ); 1 ≤ j ≤ N, 1 < t ≤ T

      bt t ( j) = argmax v t ( j); 1 ≤ j ≤ N, 1 < t ≤ T

3. Termination:

        The best score: P∗ = max v T (i)

        The start of backtrace: q T 
∗ = argmax v T (i) 10



III. 2 Complexity

The complexity of veterbi  algorithm is :

O(N2T).

Exampe : find the best sequence of  the observation CCU  using veterbi algorithm.
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V2(S)=0.5045
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V1(R)=0.03

V1(S)=0.665
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