Chapter IV. HMM

 $\mathbf 1$

GUETTICHE Mourad

I. Markov chain

- A Markov chain describes a system whose state changes over time.

- The future of the system depends only to its present state, and not to the path by which the system go to this latter.

- A Markov chain is useful when we need to compute a probability for a sequence of observable events.

II. Hidden markov model

- In many cases, the events we are interested in are hidden.

- A hidden Markov model (HMM) allows us to talk about both observed events and hidden events that we think of as causal factors in our probabilistic model.

II.1 Definition

II. 1 Definition

An HMM is specified by the following components:

- s_{1} , s_{2} ,..., s_{N} : a set of N states.

- A= $[p_{ij}]_{n^{*}n}$: a transition probability matrix A, each a_{ij} representing the probability of moving from state i to state j.

- $O = o_{1} o_{2} ... o_{m}$ a sequence of m observation symboles.

- B=[o/s] emission probabilities, each expressing the probability of an observation o being generated from a state i.

-π=π, π, ..., π_n an initial probability distribution over states.

III. Decoding

Example : given the following observable sequence.

Coat coat umbrella.

The different pssible sequence will bee.

Sunny sunny sunny, sunny rainy sunny, sunny foggy sunny,......

We have N^T possible cases with N the number of hidden states and T the size of the sequence.

 $P(S_1, S_2, S_3/O_1, O_2, O_3) = P(S_1, S_2, S_3, O_1, O_2, O_3)/p(O_1, O_2, O_3).$ $P(S_1, S_2, S_3, Q_1, O_2, O_3) = P(O_1/S_1)^*P(O_2/S_2)^*P(O_3/S_3)^*P(S_1)^*P_{12}^*P_{23}$ $P(S, O) = \prod_{i=1} P(o_i / s_i) \pi(s_1) p_{i-1i}$ $S = \text{Argmax}_{s' \in ST} P(S', O).$

III. 1 Viterbi Algorithm

Viterbi is a kind of dynamic programming that processes the observation sequence from left to right, filling out the cell.

Each cell v_t (j), represents the probability that the HMM is in state j after seeing the first t observations and passing through the most probable state sequence S_1 , ..., S_{t-1} , given the automaton λ .

The value of each cell $v_t(j)$ is computed by recursively taking the most probable path that could lead us to this cell.

Formally, each cell expresses the probability

$$
v_t(j) = \max P(s_{1}...s_{t-1}, o_{1}, o_{2}...o_{t}, s_{t} = j)
$$

III. 1 Vitebi Algorithm

Note that we represent the most probable path by taking the maximum over all possible previous state sequences max (s $_1$...s $_{\mathsf{t}-1}$) Like other dynamic programming algorithms, Viterbi fills each cell recursively.

For a given state S_j at time t, the value v_t (j) is computed as :

$$
v_{t} (j) = max_{i=1}^{n} v_{t-1} (i) a_{ij} b_{j} (o_{t}).
$$

III. 1 Viterbi Algorithm

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

$$
v_1(j) = \pi_j b_j(o_1)
$$
 $1 \le j \le N$
 $bt_1(j) = argmax v_1(j)$ $1 \le j \le N$

2. Recursion

 $v_{t}(j) = \max v_{t-1}$ (i) a $_{ij}$ b j (o $_{t}$); $1 \leq j \leq N$, $1 < t \leq T$ bt $_{\rm t}$ (j) = argmax v $_{\rm t}$ (j); 1 \le j \le N, 1 $<$ t \le T

3. Termination:

```
The best score: P^* = max v_{T}(i)
```

```
The start of backtrace: q_T^* = \text{argmax} v_T (i)
```
III. 2 Complexity

The complexity of veterbi algorithm is :

 $O(N^2T)$.

Exampe : find the best sequence of the observation CCU using veterbi algorithm.

