المحور 06: عدم ثبات التباين Heteroskedasticity (أو عدم تجانس التباين، إختلاف التباين)

<mark>المحاضرة 08:</mark> تابع

5- اختبار White:

• اختبار White يشمل على كل المتغيرات المستقلة ومربعاتها وحاصل ضربها مثنى، ويسمى White test يشمل على كل المتغيرات المستقلة ومربعاتها وحاصل ضربها مثنى، ويسمى with Cross Terms:

$$\mathbf{e}_{t}^{2} = \beta_{0} + \alpha_{1}X_{1t} + \beta_{1}X_{1t}^{2} + \alpha_{2}X_{2t} + \beta_{2}X_{2t}^{2} \dots + \alpha_{p}X_{pt} + \beta_{p}X_{pt}^{2} + u_{t}$$

• فرضية ثبات التباين (فرضية التجانس) التي نريد اختبارها:

$$H_0: \beta_0 = \alpha_1 = \beta_1 = \dots = \alpha_p = \beta_p = 0$$

- لا يتطلب في تطبيق هذا الاختبار أن تكون البواقي موزعة توزيعا طبيعيا.
 - يصلح هذا الاختبار في العينات الكبيرة التي تفوق 30 مشاهدة.

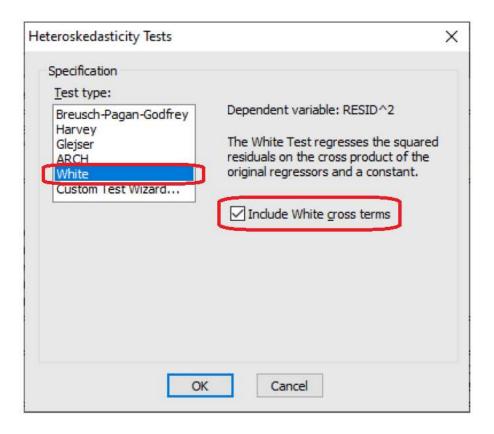
مثال:

Heteroskedasticity Test: White					
F-statistic	4.972521	Prob. F(1,28)	0.0339		
Obs*R-squared	4.524241	Prob. Chi-Square(1)	0.0334		
Scaled explained SS	4.772262	Prob. Chi-Square(1)	0.0289		

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 04/19/22 Time: 03:33

Sample: 130


Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	69.99784	16.71190	4.188504	0.0003
X^2	-4.411362	1.978264	-2.229915	0.0339

في حالة وجود شك أو إعتقاد حول تأثير مشترك بين متغيرين مستقلين كمصدر لعدم ثبات التباين، في هذه الحالة يمكن إضافة حدود مشتركة للمعادلة السابقة e_t^2 مثل $X_{1t}*X_{3t}$ أو $X_{1t}*X_{3t}$ أو $X_{1t}*X_{2t}$ المعادلة السابقة عمادلة السابقة e_t^2 كمادلي:

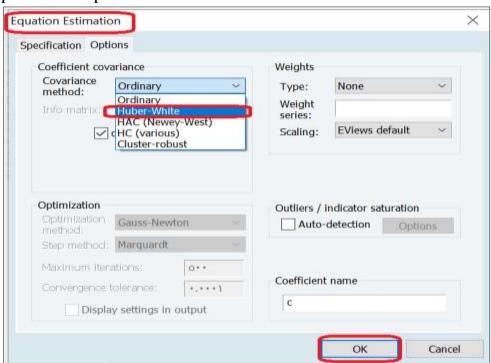
$$\mathbf{e}_{t}^{2} = \beta_{0} + \alpha_{1}X_{1t} + \beta_{1}X_{1t}^{2} + \alpha_{2}X_{2t} + \beta_{2}X_{2t}^{2} \dots + \alpha_{p}X_{pt} + \beta_{p}X_{pt}^{2} + X_{1t} * X_{2t} + u_{t}$$

وذلك بتفعيل الخيار Include White Cross Terms الذي يعطي التقدير في حالة التأثير المشترك:

Heteroskedasticity Test: White						
F-statistic Obs*R-squared Scaled explained SS	3.956388 6.799324 7.172065	Prob. F(2,27) Prob. Chi-Squ Prob. Chi-Squ	0.0311 0.0334 0.0277			
Test Equation: Dependent Variable: RE Method: Least Squares Date: 04/19/22 Time: 0 Sample: 1 30 Included observations:	3:35					
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C X^2 X	136.0182 11.98436 -78.58151	43.70370 10.25804 48.29367	3.112280 1.168289 -1.627160	0.0044 0.2529 0.1153		

خامسا: طرق معالجة مشكلة عدم ثبات التباين<mark>:</mark>

توجد عدة طرق لمعالجة مشكلة عدم ثبات التباين نذكر أهمها:


5- 1) طريقة تصحيح الأخطاء المعيارية Huber-White:

• تقدير النموذج الأساسي بطريقة OLS.

Dependent Variable: Y Method: Least Squares Date: 03/21/20 Time: 01:36 Sample: 1 30 Included observations: 30						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	24.09442	2.397697	10.04898	0.0000		
X	-4.125322	0.982272	-4.199774	0.0002		
R-squared	0.386478	Mean dependent var		15.50000		
Adjusted R-squared	0.364566	S.D. dependent var		8.585272		
S.E. of regression	6.843674	Akaike info criterion		6.748867		
Sum squared resid	1311.404	Schwarz criterion		6.842280		
Log likelihood	-99.23300	Hannan-Quinn criter.		6.778751		
F-statistic Prob(F-statistic)	17.63810 0.000245					

• نستخدم التعليمة:

Open as equation \Rightarrow options \Rightarrow covariance method \Rightarrow select: $Huber - White \Rightarrow ok$

تظهر النتائج مع ملاحظة وجود اختلاف في قيم Std.Error الخاصة بالمعلمات عن النموذج الأصلي:

Dependent Variable: Y Method: Least Squares Date: 03/21/20 Time: 01:38

Sample: 130

Included observations: 30

White-Hinkley (HC1) heteroskedasticity consistent standard errors and

covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	24.09442	3.012222	7.998886	0.0000
X	-4.125322	0.967865	-4.262289	0.0002
R-squared	0.386478	Mean dependent var		15.50000
Adjusted R-squared	0.364566	S.D. dependent var		8.585272
S.E. of regression	6.843674	Akaike info criterion		6.748867
Sum squared resid	1311.404	Schwarz criterion		6.842280
Log likelihood	-99.23300	Hannan-Quinn criter.		6.778751
F-statistic	17.63810	Durbin-Watson stat		1.808528
Prob(F-statistic)	0.000245	Wald F-statistic		18.16711
Prob(Wald F-statistic)	0.000207			

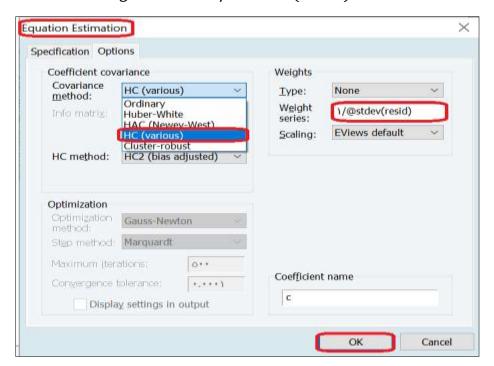
5- 2) طريقة المربعات الصغرى المعممة (Generalized Least Squares (GLS):

- . تستخدم هذه الطريقة عندما تكون σ_u^2 معلومة.
 - نقوم بتقدير النموذج الأساسي بطريقة OLS:

Dependent Variable: Y Method: Least Squares Date: 03/21/20 Time: 01:36

Sample: 130

Included observations: 30


Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	24.09442	2.397697	10.04898	0.0000
X	-4.125322	0.982272	-4.199774	0.0002
R-squared	0.386478	Mean dependent var		15.50000
Adjusted R-squared	0.364566	S.D. dependent var		8.585272
S.E. of regression	6.843674	Akaike info criterion		6.748867
Sum squared resid	1311.404	Schwarz criterion		6.842280
Log likelihood	-99.23300	Hannan-Quinn criter.		6.778751
F-statistic	17.63810	Durbin-Watson stat		1.808528
Prob(F-statistic)	0.000245			

• بافتراض أنه يوجد عدم ثبات للتباين وأن σ_u^2 معلومة، في هذه الحالة نقوم بتقسيم متغيرات نموذج الانحدار على σ_u^2 :

$$\frac{Y_i}{\sigma_u} = \beta_0 + \beta_1 \frac{X_{ji}}{\sigma_u} + \frac{\mu_i}{\sigma_u}$$

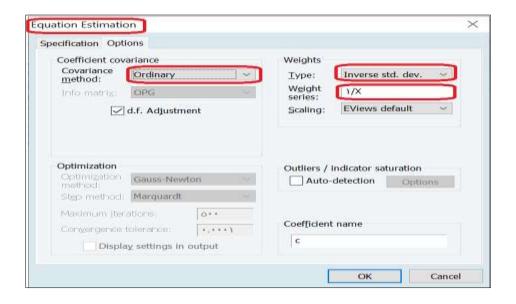
• نستخدم التعليمة:

Open as equation \Rightarrow options \Rightarrow covariance method \Rightarrow select: HC (various) \Rightarrow WeightSeries: $1/@stdev(resid) \Rightarrow ok$

Dependent Variable: Y Method: Least Squares Date: 04/20/22 Time: 12:37 Sample: 130 Included observations: 30 Weighting series: 1/@STDEV(RESID) Weight type: Inverse standard deviation (EViews default scaling) MacKinnon-White (HC2) heteroskedasticity-consistent standard errors & covariance Coefficient Std. Error Variable t-Statistic Prob. C 24.09442 3.023202 7.969834 0.0000 X -4.125322 0.973905 -4.2358570.0002

5- 3) طريقة المربعات الصغرى المرجحة (WLS) Wheighted Least Squares:

تقوم هذه الطريقة على تحويل النموذج الأساسي، كما رأينا في طريقة Glejser، إذ تقوم هذه الطريقة على إفتراضات أشكال عدم ثبات التباين والأشكال المقترحة كما رأينا سابقا. فمثلا إذا كان الشكل الثالث هو نمط عدم ثبات التباين فيمكن إجراء التحويل التالي:


$$\frac{Y_i}{X_{ji}} = \beta_j + \beta_k \frac{X_{ki}}{X_{ji}} + v_i \qquad : v_i = \frac{U_i}{X_{ji}}$$
$$E(v_i)^2 = E\left(\frac{U_i}{X_{ji}}\right)^2 = \frac{1}{X_{ii}^2} \cdot E(U_i^2)$$

• نقوم بتقدير النموذج الأساسي بطريقة OLS.

Dependent Variable: Y Method: Least Squares Date: 03/21/20 Time: 0 Sample: 1 30 Included observations:	1:36			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	24.09442	2.397697	10.04898	0.0000
X	-4.125322	0.982272	-4.199774	0.0002
R-squared	0.386478	Mean dependent var		15.50000
Adjusted R-squared	0.364566	S.D. dependent var		8.585272
S.E. of regression	6.843674	Akaike info criterion		6.748867
Sum squared resid	1311.404	Schwarz criterion		6.842280
Log likelihood	-99.23300	Hannan-Quinn criter.		6.778751
F-statistic	17.63810	Durbin-Watson stat		1.808528
Prob(F-statistic)	0.000245			

• نستخدم التعليمة:

Open as equation \Rightarrow options \Rightarrow covariance method \Rightarrow select: *Ordinary* \Rightarrow *Type*: *Inverse std. dev* \Rightarrow *Weight series*: $1/X \Rightarrow ok$

Dependent Variable: Y Method: Least Squares Date: 04/20/22 Time: 12:53 Sample: 130 Included observations: 30 Weighting series: 1/X Weight type: Inverse standard deviation (EViews default scaling) Variable Coefficient Std. Error t-Statistic Prob. C 25.66341 2.884634 8.896591 0.0000 X -5.097712 2.845566 -1.7914580.0840

ملاحظة:

في طريقة WLS نقوم دائما بتطبيق التعليمة:

Open as equation \Rightarrow options \Rightarrow covariance method \Rightarrow select: *Ordinary* \Rightarrow *Type*: *Inverse std. dev* \Rightarrow *Weight series*: \Rightarrow *ok*

مع كتابة الشكل المقترح لعدم ثبات التباين كما رأينا في اختبار Glejser.