Lecture 8

The Electric Current and the resistance

- **Electric current and Ohm's law**
- **The Electromotive Force and Internal Resistance**
- **Electrical energy and thermal energy**
- **Resistors in series.**
- **Resistors in parallel.**
- **Kirchhoff's Laws and its applications.**
- **Charging and Discharging Processes in RC**

Electric current and Ohm's law

The **current is defined as the flow of the charge**.

- The current is the rate at which charge flows through a surface of area *A*,
- If ΔQ is the amount of charge that passes through this area in a time interval Δt , the average current I_{av} is equal to the charge that passes through *A* per unit time:

The SI unit of current is the ampere (A):That is, 1 A of current is equivalent to 1 C of charge passing through the surface area in 1 s. $1 A = \frac{1 C}{1 s}$

The current density

• Consider a conductor of cross-sectional area *A* carrying a current *I*. The current density *J* in the conductor is defined as the current per unit area. Because the current $I = nqv\Delta A$, the current density is

The current density
$$
J \equiv \frac{I}{A} = n q v_d
$$

where *J* has SI units of A/m^2 .

A current density *J* and an electric field *E* are established in a conductor whenever a potential difference is maintained across the conductor, the current density is proportional to the electric field:

$$
\mathbf{J} = \sigma \mathbf{E}
$$

<u> σ **is called the conductivity</u>** of the conductor.

Ohm's Law

Ohm's law states that:

for many materials the ratio of the current density to the electric field is a constant σ that is independent of the electric field producing the current.

$$
J = \sigma E = \sigma \frac{\Delta V}{\ell}
$$

Because $J = I/A$, we can write the potential difference as

$$
\Delta V = \frac{\ell}{\sigma} J = \left(\frac{\ell}{\sigma A}\right) I = RI
$$

The quantity $R = \ell/\sigma A$ is called the **resistance** of the conductor.

$$
R \equiv \frac{\Delta V}{I}
$$

Ohm's Law

In order for a current *I* to flow there must be a potential difference, or voltage *V* , across the conducting material. We define the resistance, \bf{R} , of a material to be:

$$
R=\frac{V}{I}
$$

The unit of resistance is Ohms (W) : $1 W = 1 V/A$

For many materials, *R* is constant, the material is said to be ohmic, and we write Ohm's Law:

$$
V = IR
$$

$$
R=\frac{V}{I}
$$

The inverse of conductivity is resistivity ρ . Where ρ has the units $(\Omega.m)$. Because

 $R=l/\sigma.A=\rho l/A$

$$
R = \rho \frac{\ell}{A}
$$

Material	Resistivity (Ω · m)
Metals:	
Silver	1.47×10^{-8}
Copper	1.72×10^{-8}
Gold	2.44×10^{-8}
Aluminum	2.63×10^{-8}
Tungsten	5.51×10^{-8}
Steel	20×10^{-8}
Lead	22×10^{-8}
Mercury	95×10^{-8}
Semiconductors:	
Pure carbon	3.5×10^{-5}
Pure germanium	0.60
Pure silicon	2300
Insulators:	
Amber	5×10^{14}
Mica	$10^{11} - 10^{15}$
Teflon	10^{16}
Quartz	7.5×10^{17}

Table 5.1 Values of Resistivity of Materials

Electromotive Force

- When the current in the circuit is constant in magnitude and direction and is called **direct current DC**.
- A battery is called a *source of electromotive force* or, *emf.*
- **The emf of a battery is the maximum possible voltage that the battery can provide between its terminals.**
- When an electric potential difference exists between two points, the source moves charges from the lower potential to the higher.
	- What makes charges flow in circuits?
		- Potential difference AV
		- Source of charges
	- This is what the EMF provides
		- NB: EMF=Electromotive force but it's not a force!!!

The internal resistance

- The resistance of the battery is called **internal resistance** *r*.
- *I* is the current in the circuit, I_r is the current through the resistor, emf is
- The terminal voltage of the battery

 $\Delta V = V_b - V_a$ $\Delta V = \varepsilon - I_r$

Electrical energy and thermal energy.

- The resistor represents a *load* on the battery because the battery must supply energy to operate the device.
- The potential difference across the load resistance is
- $\Delta V = \mathbf{IR}$ and

$$
I = \frac{\mathcal{E}}{R+r}
$$

• The total power output $I\epsilon$ of the battery is delivered to the external load resistance in the amount *I* ²*R* and to the internal resistance in the amount l^2 r.

$$
I\mathcal{E} = I^2 R + I^2 r
$$

Electrical Power and Electrical Work

All electrical circuits have three parts in common.

- 1. A voltage source.
- 2. An electrical device
- 3. Conducting wires.
- **The work done (W) by a voltage source is equal to the work done by the electrical field in an electrical device**,

1. **Work = Power x Time.**

- The **electrical potential** is measured in **joules/coulomb** and a quantity of **charge is measured in coulombs**, so the **electrical work is measure in joules**.
- A **joule/second** is a unit of power called the **watt**.

2. **Power = current x potential**

- Or, $P = I V = I^2 R$
- **Energy = Power Time**

Example 28.1 Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.05Ω . Its terminals are connected to a load resistance of 3.00Ω .

(A) Find the current in the circuit and the terminal voltage of the battery.

Solution Equation 28.3 gives us the current:

$$
I = \frac{\mathcal{E}}{R+r} = \frac{12.0 \text{ V}}{3.05 \Omega} = 3.93 \text{ A}
$$

and from Equation 28.1, we find the terminal voltage:

 $\Delta V = \mathcal{E} - Ir = 12.0 \text{ V} - (3.93 \text{ A}) (0.05 \Omega) = 11.8 \text{ V}$

• Calculate the power delivered to the load resistor of 3 ohm when the current in the circuit is 3.93 A.

Solution The power delivered to the load resistor is

$$
\mathcal{P}_R = I^2 R = (3.93 \text{ A})^2 (3.00 \text{ }\Omega) = 46.3 \text{ W}
$$

Resistors in Series

for a series combination of two resistors, the currents are the same in both resistors because the amount of charge that passes through *R*¹ must also pass through *R*² in the same time interval.

The potential difference across the battery is applied to the **equivalent resistance R_{eq}:**

 $\Delta V = IR_{\text{eq}}$

Resistors in Series

$$
\Delta V = IR_{eq}
$$

\n
$$
\Delta V = IR_{eq} = I(R_1 + R_2) \longrightarrow R_{eq} = R_1 + R_2
$$

The equivalent resistance of three or more resistors connected in series is

$$
R_{\text{eq}} = R_1 + R_2 + R_3 + \cdots
$$

- **Problem 5.8.** Consider the series portion of a circuit shown in Fig. 5-4. The current in the circuit flows from a to b and is 2.3 A.
- What is the equivalent resistance? $\left\{a\right\}$
- What is the voltage across the entire circuit? Which point, a or b , is at the higher potential? (b)
- What is the voltage across each resistor? (c)

Problem 5.8. Consider the series portion of a circuit shown in Fig. 5-4. The current in the circuit flows from a to b and is 2.3 A.

- What is the equivalent resistance? $\left(a\right)$
- (b) What is the voltage across the entire circuit? Which point, a or b , is at the higher potential?
- What is the voltage across each resistor? (c)

Solution

- The equivalent resistance is the sum of all the resistances, or $R_{eq} = 40 + 60 + 25 = 125 \Omega$. (a)
- The voltage across the entire circuit is $V_{total} = IR_{eq} = (2.3 \text{ A})(125 \Omega) = 288 \text{ V}$. Since the current flows (b) from a to b , and the electric field does positive work in pushing charges through the resistors, energy is lost as the charges move through. Thus the potential at a is higher (by 288 V) than the potential at b .
- The voltage across each resistor is IR_i. Thus $V_1 = (2.3 \text{ A})(40 \Omega) = 92 \text{ V}, V_2 = (2.3 \text{ A})(60 \Omega) = 138 \text{ V}$ (c) and $V_3 = (2.3 \text{ A})(25 \Omega) = 58 \text{ V}.$

Note. Adding the voltages gives $92 + 138 + 58 = 288$ V, which is the voltage we calculated in $part(b)$.

Resistors in Parallel

• The current *I* that enters point *a* must equal the total current leaving that point:

When resistors are connected in parallel, the potential differences across the resistors is the same.

Resistors in Parallel

- Because the potential differences across the resistors are the same, the expression
- $\Delta V = IR$ gives

$$
I = I_1 + I_2 = \frac{\Delta V}{R_1} + \frac{\Delta V}{R_2} = \Delta V \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{\Delta V}{R_{eq}}
$$

$$
\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}
$$

$$
\frac{1}{R_{eq}} = \frac{1}{R_1} = \frac{1}{R_2}
$$

the equivalent resistance

$$
\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots
$$

Problem 5.9. Three resistors are connected in parallel, as in Fig. 5-5. The potential difference between a and b is 75 V.

- What is the equivalent resistance of this circuit? (a)
- (b) What is the current flowing from point a ?
- What is the current in each resistor? (c)

Fig. 5-5

Problem 5.9. Three resistors are connected in parallel, as in Fig. 5-5. The potential difference between a and b is 75 V.

- What is the equivalent resistance of this circuit? (a)
- (b) What is the current flowing from point a?
- What is the current in each resistor? (c)

Solution

- The equivalent resistance is given by $1/R_{eq} = \sum (1/R_i) = 1/40 + 1/60 + 1/25 = 0.817$, or $R_{eq} = 12.2 \Omega$. (a)
- The total current is $I_{\text{tot}} = V/R_{\text{ea}}$. Thus $I_{\text{tot}} = 6.13$ A. (b)
- The current in each resistor is $I_i = V/R_i$. Thus $I_1 = (75 \text{ V})/(40 \Omega) = 1.88 \text{ A}$, $I_2 = (75 \text{ V})/(60 \Omega) = 1.25$ (c) A, $I_3 = (75 \text{ V})/(25 \Omega) = 3.0 \text{ A}$. [The total current is 1.88 + 1.25 + 3.0 = 6.13 A, as in part(b).]

Problem 5.20. In the circuit segment of Fig. 5-2(b), the voltage across the circuit is 55V. If $R_1 = 25 \Omega$ and $R_2 = 35 \Omega$, calculate (a) the current in each resistor; (b) the power dissipated in each resistor and (c) the power dissipated in the equivalent resistance. Compare the answer to this with the sum of the answers to (b) .

Solution

 (a) The voltage across each resistor is 55 V. Thus the current for each resistor is $I = V/R$. Then $I_1 =$ $(55 \text{ V})/(25 \Omega) = 2.2 \text{ A}$, and $I_2 = (55 \text{ V})/(35 \Omega) = 1.57 \text{ A}$.

Problem 5.20. In the circuit segment of Fig. 5-2(b), the voltage across the circuit is 55V. If $R_1 = 25 \Omega$ and $R_2 = 35 \Omega$, calculate (a) the current in each resistor; (b) the power dissipated in each resistor and (c) the power dissipated in the equivalent resistance. Compare the answer to this with the sum of the answers to (b) .

Solution

- (a) The voltage across each resistor is 55 V. Thus the current for each resistor is $I = V/R$. Then $I_1 =$ $(55 \text{ V})/(25 \Omega) = 2.2 \text{ A}$, and $I_2 = (55 \text{ V})/(35 \Omega) = 1.57 \text{ A}$.
- (b) Since the voltage across each resistor is the same, the power in each resistor can be calculated using $P = V^2/R$. Thus $P_1 = (55 \text{ V})^2/(25 \Omega) = 121 \text{ W}$, and $P_2 = (55 \text{ V})^2/(35 \Omega) = 86.4 \text{ W}$. Alternatively, we could have used $P = I^2 R$, using the current appropriate to each resistor. Then $P_1 = (2.2 \text{ A})^2 (25 \Omega)$ = 121 W, and $P_2 = (1.57 \text{ A})^2 (35 \Omega) = 86.4 \text{ W}.$
- (c) The equivalent resistance is $R_{eq} = (25)(35)/(25 + 35) = 14.6 \Omega$. The total power is therefore $P_{tot} =$ $(55)^2/14.6 = 207.4$ W. This equals the sum of $P_1 + P_2 = 121 + 86.4$.

Kirchhoff's Rules

- The procedure for analyzing more complex circuits is greatly simplified if we use two principles called Kirchhoff 's rules:
- **1. Junction rule.** The sum of the currents entering any junction in a circuit must equal the sum of the currents leaving that junction:

$$
\sum I_{\text{in}} = \sum I_{\text{out}}
$$

• **2. Loop rule.** The sum of the potential differences across all elements around any closed circuit loop must be zero:

$$
\sum_{\text{closed} \atop \text{loop}} \Delta V = 0
$$

Kirchhoff's Rules

- **Kirchhoff's first rule is a statement of conservation of electric charge.**
- All charges that enter a given point in a circuit must leave that point because charge cannot build up at a point.
- If we apply this rule to the junction shown in Figure, we obtain

 $I_1 = I_2 + I_3$

When applying Kirchhoff's second rule in practice, we imagine *traveling* around the loop and consider changes in *electric potential,* rather than the changes in *potential energy* described in the preceding paragraph. You should note the following sign conventions when using the second rule:

•Because charges move from the high-potential end of a resistor toward the low potential end, if a resistor is traversed in the direction of the current, the potential differenceΔ*V* across the resistor is -*IR* .

•If a resistor is traversed in the direction *opposite* the current, the potential difference Δ*V* across the resistor is +*IR* .

•If a source of emf (assumed to have zero internal resistance) is traversed in the DIRECTION of the emf (from $-$ to $+$), the potential difference ΔV is +E. The emf of the battery increases the electric potential as we move through it in this direction.

•If a source of emf (assumed to have zero internal resistance) is traversed in the direction OPPOSITE the emf (from $+$ to $-$), the potential difference ΔV is -E. In the case of the emf of the battery reduces the electric potential as we move through it.

Circuit Analysis Conventions

Apply Kirchhoff's first law: $I = I_1 + I_2$

$$
I = I_1 + I_2 = V \left(\frac{1}{R_1} + \frac{1}{R_2} \right)
$$

Example - Kirchhoff's Laws

At junction \boldsymbol{b} the incoming current must equal the outgoing current

$$
\dot{i}_2 = \dot{i}_1 + \dot{i}_3
$$

• At junction *a* we again equate the incoming current and the outgoing current

$$
\dot{i}_1 + \dot{i}_3 = \dot{i}_2
$$

But this equation gives us the same information as the previous equation!

We need more information

to determine the three currents -2 more independent equations

• We now have three equations

$$
i_1 + i_3 = i_2 \qquad i_1 R_1 + V_{emf,1} + i_2 R_2 = 0 \qquad i_3 R_3 + V_{emf,2} + i_2 R_2 = 0
$$

- And we have three unknowns i_1 , i_2 , and i_3
- We can solve these three equations in a variety of ways

$$
i_1 = -\frac{(R_2 + R_3)V_{emf,1} - R_2V_{emf,2}}{R_1R_2 + R_1R_3 + R_2R_3}
$$
\n
$$
i_2 = -\frac{R_3V_{emf,1} + R_1V_{emf,2}}{R_1R_2 + R_1R_3 + R_2R_3}
$$
\n
$$
i_3 = -\frac{-R_2V_{emf,1} + (R_1 + R_2)V_{emf,2}}{R_1R_2 + R_1R_3 + R_2R_3}
$$
\n
$$
i_4 = -\frac{R_2V_{emf,1} + (R_1 + R_2)V_{emf,2}}{R_1R_2 + R_1R_3 + R_2R_3}
$$

- Going around the left loop counterclockwise starting at point *b* we get
- Going around the right loop clockwise starting at point *b* we get

$$
-i_1 R_1 - V_{emf,1} - i_2 R_2 = 0 \implies i_1 R_1 + V_{emf,1} + i_2 R_2 = 0
$$

- Going around the outer loop clockwise starting at point *b* we get $-i$ ₃ R ₃ $-V$ _{emf,2} $i_1 R_2 = 0 \Rightarrow i_3 R_3 + V_{emf,2} + i_2 R_2 = 0$
- But this equation gives us no new information!

$$
-i_3 R_3 - V_{emf,2} + V_{emf,1} + i_1 R_1 = 0
$$

Charging and Discharging Processes in RC Circuits

• A circuit containing a series combination of a resistor and a capacitor is called An **RC Circuits**

Circuit diagram A capacitor in series with a resistor, switch, and battery.

RC Circuits

• To analyze this circuit quantitatively, let us apply Kirchhoff's loop rule to the circuit after the switch is closed. Traversing the loop in Fig. c clockwise gives

where *q*/*C* is the potential difference across the capacitor and *IR* is the potential difference across the resistor.

RC Circuits

• **Charging a Capacitor**

Charge as a function of time for a capacitor being charged

$$
q(t) = C\mathcal{E}(1 - e^{-t/RC}) = Q(1 - e^{-t/RC})
$$

 $I(t) = \frac{\mathcal{E}}{R} e^{-t/RC}$ **The charging current is**

The quantity *RC*, which appears in the exponents of Equations, is called the time constant - of the circuit.

It represents the time interval during which the current decreases to 1/*e* of its initial value.

RC Circuits

• Discharging a Capacitor

Charge as a function of time for a discharging capacitor

$$
q(t) = Qe^{-t/RC}
$$

Current as a function of time for a discharging capacitor:

$$
I(t) = \frac{dq}{dt} = \frac{d}{dt} (Qe^{-t/RC}) = -\frac{Q}{RC} e^{-t/RC}
$$

where $Q/RC = I_0$ is the initial current.

The negative sign indicates that as the capacitor discharges, the current direction is opposite its direction when the capacitor was being charged.