
1

Mila University center
Institute of Mathematics and Computer Science

1st Year LMD Mathematic

Practical Work series N° 3: Files

1. Definition :

 A computer file is in the common sense, a collection, or a set of digital

data (0,1) gathered under the same name, recorded on a permanent storage

medium, called mass memory, such as a hard disk, a CD-ROM, flash

memory, etc., and handled as a unit.

A file has a file name that is used to designate and access the content. This

name often includes a suffix called the extension, which provides

information on the nature of the information contained in the file and

therefore the software that can be used to manipulate it.

2. File types:

In programming, there are mainly two types of files:

 The text file: They are made up of a series of characters forming a

text (character string). They are used to record texts but also

numerical values with a view to exchanging them with other software.

They are readable by a simple text editor.

 The binary file: containing data in the form of bytes which therefore

only have meaning for the software that uses them, this type of files is

unreadable by a text editor , it is made up of a collection of records

, each record containing a collection of logical units of information

also called fields .

3. Handling binary files:

Most current programming languages, particularly C++ , have instructions

for manipulating files. These instructions can be classified as follows:

 Opening and creating a file,

 Closing a file

 Reading and writing records from the file,

 Positioning in the file,

 End of file detection.

Noticed :

To use a physical file F in a program, this program had to include a file

variable f . The association between f and F will therefore be carried out by

means of a process called assignment , such that the modifications made to f

in the program will directly affect F on its support .

In C++ language, this step is integrated into the file opening.

3.1 Opening and creating a file

 To open a file in C++, we use the predefined “ fopen” function ,

The syntax is: FILE* fopen(“ file-name ”, “ mode ”);

FILE*: the return value of the function is a pointer to the file type.

“ file-name ”: The first argument to fopen is the name of the file

concerned, provided in the form of a character string (exp: “ f.txt ”).

" mode " : The second argument, mode , is a character string which specifies

the file access mode, the table below shows the different modes:

The

mode

interpretation If the file exists If does not

exist
“r” Open for reading Read from the

beginning

Error

“w” Open for writing Overwrite content Create file
"a" Open read/write Write at the end Create file
“r+” Open read/write Read from the

beginning

Error

“w+” Open read/write Overwrite content Create file
"a+" Open read/write Write at the end Create file

2

Example: open for reading a file named “data.txt” which is located in the C

partition of the hard drive.

File *f; // declare a pointer to a file

Char name = "C:\data.txt"; // a string contains the path

f = fopen(name,"r");

Note: the fopen function in this case returns the address of the FILE structure

associated with the file. It returns NULL if it cannot open the file.

Therefore: Testing the value returned by fopen is essential to prevent errors:

non-existent file, defective or saturated physical media, excessive number of

open files, etc.

Here is a complete example:

include <iostream>

using namespace std;

char name[6]= "p.txt";

FILE *f;

f = fopen(name,"r"); // open the file for reading

if (f == NULL) // tests if there is an opening problem

cout << "error opening file " << name << endl; // show error

else // successful opening

{

// here we read data from the file

}

3.2 Closing a file

To close a file in C++, we use the predefined function “ fclose” ,

The syntax is: fclose (FILE*);

Example: fclose(f); // close file, f is a pointer to a file.

Noticed :

It is essential to close a file before the end of the program that uses it to avoid

data loss.

3.3 Reading and writing from a file

After opening the file, several possibilities are offered: read the information it

contains, modify some of it, delete some of it, or add others.

a) Reading: To read data, we use the fread() function as follows:

int fread (void* adr_buffer , int element_size , int number_elements ,

FILE* file);

 fread function returns the number of elements read.

 adr_buffer: the address of the variable which serves as a buffer

where to store the data to be read.

 element_size: the size in bytes of an element

 nb_elements: an integer which specifies the number of elements that

we will read

 file : The pointer to the file to read

Example: nb_lu = fread(&b, sizeof(int) , 1 ,f); // reading an element of

integer type from the file pointed to by f, and putting the data read in the

variable b which is of integer type.

Important note: this function allows us to read one or more elements of the

file, so to read all the file we must repeat the execution of this function until

the end of the file, to detect the end of the file, we have two ways :

1) the fread() function returns the number of elements actually read. If the

returned value differs from the number of elements to read, it is because the

end of the file has been encountered . We use it as a condition of a while

loop.

 2) the second is to use the predefined function feof(), it returns the NULL

value if it is the end of the file, and another value otherwise.

b) Writing: To write data, we use the fwrite() function as follows (it is

similar to reading):

3

int fwrite (void* adr_buffer , int element_size , int element_number ,

FILE* file);

c) Modification: to modify an element of a file, you must position the cursor

on this element, then you overwrite its values with the new ones.

So, we read the file, element by element using the fread() function up to the

target element.

fseek function allows you to position the cursor at the desired position.

Syntax: int fseek (FILE * Stream, long Offset, int Origin); Or :

 fseek: returns a 0 if the operation is successful, another value

otherwise

 Stream: this is the pointer to the file

 Offset is the number of bytes of the move, counted algebraically from

Origin .

 Origin is a constant which is SEEK_SET (“from the beginning of the

file”) or SEEK_END (“from the end of the file”) or, SEEK_CUR

(“from the current position”).

Application example:

Here is a program that contains three functions:

 The first allows you to write a certain number of points in a file, each

point contains a name, and the X, and Y coordinates.

 The second function allows you to read the values of these points.

 The third modify the coordinates of a point.

First of all, we must define a Point structure which contains 3 fields.

#include <iostream>

//#include <stdio.h>

using namespace std;

// the definition of the Point type

struct Point

{

char n[5];

float X,Y;

};

const int MAX = 10; // the maximum number of points to enter

char name[6]= "p.txt"; // character string which contains the name of the file

Point v[MAX];
FILE *f; // the pointer to a file

//-------------the GrabPoint function-----------

Point GrabPoint()

{

Point P;

cout << "Enter the point name ";

cin >> Pn;

cout << "Enter the coordinates of the point ";

cin >> P.X >> P.Y ;

return P;

}

//-------------the write function----------------------------

void write (FILE *f)

{

int i,m;

cout << ">>>>> insert points into file:"<< name << endl;

cout << "how many points do you want to enter:";

cin >> m;

if ((f = fopen(name,"w")) == NULL) // open the file for writing

cout << "error opening (creating) file " << name << endl;

else

{

for (i=0; i<m; i++) // we fill the vector

v[i] = GrabPoint(); // call to the EnterPoint function

fwrite(v,sizeof(Point),m,f); // write v to the file

fclose(f); // close the file

}

}

//---------------- The read function -------------------

void read (FILE* f)

{

int nb_lu,i;

Point ww;

cout << ">>>>>>>>>>reading points from the file: " << name << endl;

if ((f = fopen(name,"r")) == NULL) // open file for reading

cout << "error opening file " << name << endl;

else

{

4

// while the end of the file is not reached

while ((nb_lu = fread(&ww,sizeof(Point),1,f)==1))

{

// the fread function is integrated into the loop condition

cout << ww.n << " -> " << ww.X <<" " <<ww.Y<<endl; // display of the point read

}

fclose(f); // close the file

}

}

//--------------the modify function--------------------------

void modify (FILE* f)

{

char val[5],;

Point p[0],n_val[0];

bool find;

cout << ">>>>>>modification of a point in the file: " << name << endl;

if ((f = fopen(name,"r+")) == NULL) // open the file in "update"

cout << "error opening file " << name << endl;

else

{

cout << "Enter the value to update?" << endl;

cin >> val;

find = false;

//while is not the end of the file and val is not found

while ((! feof(f)) && (! find)) // search for val

{

fread(&p,sizeof(Point),1,f); // read a point

if (strcmp(val,p[0].n)==0) // compare with val

find = true;

}

if (find) // if val exists, so the cursor is on the next point

{

fseek(f,-sizeof(Point),SEEK_CUR); // position the cursor on the previous point

cout << "Enter the new value?" << endl;

cin >> n_val[0].n;

cout << “Enter the new X coordinate?” << endl;

cin >> n_val[0].X;

cout << “Enter the new Y coordinate?” << endl;
cin >> n_val[0].Y;

fwrite(&n_val,sizeof(Point),1,f); // insert the new point

}

else cout << val << "not found" << endl;

fclose(f); // close the file

}

}

//--

int main()

{

// calls to functions

write(f);

read (f);

modify(f);

read (f); // to display the modifications

system("PAUSE");

}

Exercise:

You are asked to create a student management system . This system allows

us to:

 Enter a student's data; Each student is identified by his/her: last name

, first name , date of birth , group , notes for algorithmic, algebra,

and analysis.

 display a student's data

 View student data in a group.

 Edit student data.

