# **Direct Methods for Solving Systems of Linear Equations**

The solution of large linear systems is of great importance in applied science, and engineering. In general, linear systems can be solved using direct or indirect (iterative) methods.

- Direct methods can give the exact value of the solution after a finite number of operations.

- Indirect (iterative) methods consist of constructing a series of solution vectors  $x_i$  from a vector proposed as an initial solution. The sequence of solutions converges to the exact solution x.

Direct methods are often more reliable, but they usually require a computer with a very large memory. These methods are suitable for small systems, but not for large ones.

#### 5.1 Mathematical review about matrixes

#### 5.1.1 Definition

The matrix of IR element is a two-dimensional array composed of m rows and n columns. The set of IR matrices of dimension m, n is denoted  $M_{(m,n)}$  and forms a vector space on IR.

#### Example

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$
(1)

Matrix A contains three lines and four columns (m = 3, n = 4) we note  $A_{(3,2)}$ .

## > Square matrix

A square matrix is a matrix whose number of lines equals the number of columns (n = m).

## 5.1.2 Some properties

## Sum of two matrixes

Let A and B be two matrixes:

• 
$$A + B = [a_{ij} + b_{ij}]_{m,n} \ 1 \le i \le m, \quad 1 \le j \le n$$
  

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}, \ B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \end{bmatrix} \Rightarrow$$

$$A + B = \begin{bmatrix} (a_{11} + b_{11}) & (a_{12} + b_{12}) & (a_{13} + b_{13}) & (a_{14} + b_{14}) \\ (a_{21} + b_{21}) & (a_{22} + b_{22}) & (a_{23} + b_{23}) & (a_{24} + b_{24}) \\ (a_{31} + b_{31}) & (a_{32} + b_{32}) & (a_{33} + b_{33}) & (a_{34} + b_{34}) \end{bmatrix}$$

$$(2)$$

## > Product of a matrix with un number

• 
$$\alpha A = [\alpha x_{ij}]_{m,n}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \rightarrow \alpha A = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \alpha a_{13} & \alpha a_{14} \\ \alpha a_{21} & \alpha a_{22} & \alpha a_{23} & \alpha a_{24} \\ \alpha a_{31} & \alpha a_{32} & \alpha a_{33} & \alpha a_{34} \end{bmatrix}$$
(3)

## > Transpose

We call a matrix  $A^t$  transpose of the matrix A, the matrix where the rows are inverted with the columns such that

$$a_{ij}^t = a_{ji} \tag{4}.$$

So if the matrix A is of m rows and n columns, the transposed matrix  $A^t$  is of n rows and m columns.

$$A_{3,4} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 50 & 60 & 70 & 80 \\ 10 & 20 & 30 & 40 \end{bmatrix} \rightarrow A_{4,3}^{t} = \begin{bmatrix} 1 & 50 & 10 \\ 2 & 60 & 20 \\ 3 & 70 & 30 \\ 4 & 80 & 40 \end{bmatrix}$$
(5)

## Symmetric matrix

• A matrix A (necessarily, square matrix) is called symmetric if  $A^t = A$  ( $a_{ij} = a_{ji}$ )

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 8 \end{bmatrix} = A^{t}$$
(5.6)

## Antisymmetric matrix (Skew-symmetric matrix)

An antisymmetric matrix, also known as a skew-symmetric matrix, is a square matrix that satisfies  $A^t = -A$  (In other words, if  $a_{ij} = -a_{ji}$ )

$$A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{bmatrix} \Rightarrow A^{t} = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{bmatrix} = -A$$
(5.7)

## ➤ Identity matrix

The identity matrix, or unit matrix, is **a square** matrix with all its elements zero, except the diagonal, which is equal to 1..

$$I = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \dots & \vdots \\ \vdots & \ddots & 1 & 0 & \vdots \\ \vdots & \cdots & \ddots & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{bmatrix} \dots \dots \dots$$

## Product of two matrices

Let  $A \in M_{m,n}$  and  $B \in M_{n,p}$ , then the product  $C \in M_{m,p}$  is given by the formula,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \ 1 \le i \le m, \qquad 1 \le j \le n$$

#### Example

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \Rightarrow$$

$$AB = \begin{bmatrix} (a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}) & (a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}) & (a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33}) \\ (a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}) & (a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{33}) & (a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33}) \\ (a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31}) & (a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32}) & (a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33}) \end{bmatrix}$$

Notes:

- $AB \neq BA$
- ABC = (AB)C = A(BC)
- $\alpha(AB) = (\alpha A)B = A(\alpha B)$

## > Invertible matrix

We say that a matrix is invertible if:

- the matrix is square,
- Its determinant is not equal to zero.

Thus, for a matrix A, there exists a matrix B of the same size where the products AB and BA are equal to the identity matrix.

$$AB = BA = I$$

In this case, matrix B is unique. B is called the inverse matrix of A and is denoted,

$$B = A - 1.$$
$$AA - 1 = A - 1A = I.$$

- > Triangular matrix: there are two types of triangular matrices:
  - Lower triangular matrix; A is called lower triangular, if  $a_{ij} = 0$  for j > i

$$A_{n,m} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \vdots \\ \vdots & \vdots & \ddots & 0 \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \dots \dots \dots$$

- **Upper triangular matrix**; A is called lower triangular, if  $a_{ij} = 0$  for j < i

$$A_{n,m} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \vdots & \vdots \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \dots$$

## Positive definite symmetric matrix:

A symmetric matrix is said to be positive definite if it satisfies one of the four equivalent properties (if one of the conditions is verified, the others are necessarily verified).

- 1. The n main determinants of A (all main minors) are strictly positive.
- 2. If for any vector  $x \in IR^n \neq 0$ :  $x^tAx > 0$ .
- 3. All eigenvalues of A are strictly positive.
- 4. There exists a lower triangular matrix L such that,  $A = LL^t$ .

From the third condition, A is strictly positive if:



Since every major minor is strictly positive, then,  $(\det A_{(k)_{1 \le k \le n}} > 0)$ 

- 
$$I_1 = a_{11} > 0$$
,  
-  $I_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0$ ,  
.  
.  
.  
-  $I_n = \det A > 0$ .

## Example

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
(5.9)

- It is clear that A is symmetric (A<sup>t</sup>=A),

#### - First method:

- 1- For A to be strictly positive, all its minors must be strictly positive. A is a (3x3) matrix; we therefore find three main determinants:
- 2-  $I_1 = a_{11} = 1 > 0$

3- 
$$I_2 = det \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = (1 \times 2 - 1 \times 1) = 1 > 0$$
  
4-  $I_3 = det \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = 1 \times det \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} - 1 \times det \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} + 0 \times det \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = 2 > 0.$ 

Therefore, the matrix A is symmetric and strictly positive.

- Second method:

$$x^{t}Ax = (x_{1} x_{2} x_{3}) \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = (x_{1} x_{2} x_{3}) \begin{bmatrix} x_{1} + x_{2} \\ x_{1} + 2x_{2} + x_{3} \\ x_{2} + 2x_{3} \end{bmatrix}$$

$$x_1^2 + x_1x_2 + x_1x_2 + 2x_2 + x_2x_3 + x_2x_3 + 2x_3^2 = (x_1 + x_2)^2 + (x_2 + x_3)^2 + 2x_3^2 > 0.$$

Therefore A is symmetric strictly positive.

#### Example 2

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 8 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$$
$$x^t A x = (x_1 - x_2) \begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (x_1 + 2x_2)^2 + 4x_2^2 > 0,$$

Therefore A is symmetric strictly positive.

**Note:** To check if a large matrix is strictly positive, we apply Gaussian scaling. That is to say, make the matrix upper triangular and check that all the diagonal elements are strictly positive.

## **5.3 Systems of equations**

$$\begin{cases} a_{11}x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1 \\ a_{21}x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2 \\ \vdots \\ \vdots \\ a_{m1}x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \end{cases}$$

The system cannot be solvable if only the number of equations equals the number of unknowns, i.e n=m,

$$\begin{cases} a_{11}x_1 + a_{12} x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22} x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ \vdots \\ a_{n1}x_1 + a_{m2} x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

The system can be expressed using the format, A X = B. Where:

- A is a square matrix given by the elements  $(a_{ij} \ 1 \le i \le n, 1 \le j \le n)$
- X is the column matrix of unknowns, and
- B is the vector representing the second member of the system.

$$A = \begin{bmatrix} a_{11} + a_{12} + \dots + a_{1n} \\ a_{21} + a_{22} + \dots + a_{2n} \\ \vdots \\ \vdots \\ a_{n1} + a_{m2} + \dots + a_{nn} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} et \ b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \dots \dots + a_{nn}$$

#### 5.4 Solving a system of equations

There are several direct methods for solving systems of equations. In this course, three methods will be studied: Gauss method, Cholesky method, and LU factorization method (Crout factorization and Doolittle factorization).

## 5.3.1 Gauss method:

The Gauss method, or Gauss elimination, as it is also called the Gauss pivot method, consists of transforming the system AX = b into a triangular system using an algorithm called the Gaussian elimination algorithm.

The AX = B system can be transformed into an upper triangular system or a lower triangular system. Generally, the Gaussian method transforms the system into a lower triangular system. The upper triangular system is written in the form,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & &$$

**Note:** The elements  $a_{ij}$  and  $b_i$  are not the same as the elements given in the first system.

At this point, we can find  $x_n$  from the last row, then we go back to find  $x_{n-1}$  from the line before the last one, and so on until we get  $x_1$ .

To transform a non-triangular system into a triangular system, the following transformations can be used:

• Altering lines.

#### Example

$$\begin{cases} x_2 + 4x_3 = -3 \\ 2x_1 - 3x_2 + x_3 = 2 \\ 2x_1 - x_2 + 3x_3 = 1 \end{cases} \implies \begin{cases} 2x_1 - 3x_2 + x_3 = 2 \\ x_2 + 4x_3 = -3 \\ 2x_1 - x_2 + 3x_3 = 1 \end{cases}$$

Multiplying an equation by a non-zero constant

#### Example

$$\begin{cases} 2x_1 - 3x_2 + x_3 = 2\\ (x_2 + 4x_3) = (-3) \\ 2x_1 - x_2 + 3x_3 = 1 \end{cases} \implies \begin{cases} 2x_1 - 3x_2 + x_3 = 2\\ -2(x_2 + 4x_3) = -2(-3)\\ 2x_1 - x_2 + 3x_3 = 1 \end{cases}$$

 An equation can be replaced by another one by adding or subtracting a certain number of times from another equation.

#### Example

## ✤ Gauss method procedure

• Initially, we group *A* and *b* into a single matrix,

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} \times \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ \vdots \\ b_n \end{vmatrix} \rightarrow \begin{vmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} & b_n \end{vmatrix}$$

• Transformation of matrix A into an upper triangular matrix

**Step 1:** We put  $A = A^{(1)}$  and  $b = b^{(1)}$ 

$$[A:b]^{1} = \begin{bmatrix} a_{11}^{(1)} & \dots & a_{1n}^{(1)} & b_{1}^{(1)} \\ \vdots & \dots & \vdots & \ddots \\ a_{n1}^{(1)} & \dots & a_{nn}^{(1)} & b_{n}^{(1)} \end{bmatrix}$$

- Choose the first equation such that  $a_{11}^{(1)} \neq 0$ .
- We carry out the following operations :

$$L_{1} \text{ is maintained} \Leftrightarrow \begin{cases} L_{1}^{(2)} = L_{1}^{(1)} \\ L_{i}^{(2)} = L_{i}^{(1)} - \frac{a_{i1}^{(1)}}{a_{11}^{(1)}} L_{1}^{(1)}; i = 2 \dots n \end{cases}$$

We then obtain:

$$[A:b]^{2} = \begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} & \dots & b_{1}^{(2)} \\ 0 & a_{22}^{(2)} & \dots & b_{2}^{(2)} \\ 0 & \vdots & & \vdots \\ 0 & a_{n2}^{(2)} & \dots & b_{n}^{(2)} \end{bmatrix}.$$

#### Step 2:

- Choose the second equation such that  $a_{22}^{(2)} \neq 0$ .

$$\begin{cases} L_{1}^{(3)} = L_{1}^{(1)} \\ L_{2}^{(3)} = L_{2}^{(2)} \\ L_{i}^{(3)} = L_{i}^{(2)} - \frac{a_{i2}}{a_{22}^{(2)}} L_{i}^{(2)} & i = 3 \dots n \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

At last, we get a triangular system that can be used to calculate  $x_n$ , then  $x_{n-1}$ ... (resolution by ascent).

#### Example

We use the Gauss method to solve the following system;

$$\begin{cases} x_1 + 3x_2 + 3x_3 = 0\\ 2x_1 + 2x_2 + 2x_3 = 2\\ 3x_1 + 2x_2 + 6x_3 = 11 \end{cases}$$

Grouping *A* and *b* into a single matrix

$$\mathbf{A}^{(1)} = \begin{bmatrix} 1 & 3 & 3 & \vdots & 0 \\ 2 & 2 & 2 & \vdots & 2 \\ 3 & 2 & 6 & \vdots & 11 \end{bmatrix}$$

**Step 1 :** elimination of  $x_1$ 

$$\begin{split} & L_2^{(2)} \longrightarrow L_2^{(1)} - 2L_1^{(1)} \\ & L_3^{(2)} \longrightarrow L_3^{(1)} - 3L_1^{(1)} \end{split}$$

$$\mathbf{A}^{(2)} = \begin{bmatrix} 1 & 3 & 3 & \vdots & 0 \\ 0 & -4 & -4 & \vdots & 2 \\ 0 & -7 & -3 & \vdots & 11 \end{bmatrix}$$

**Etape 2 :** elimination of  $x_2$  :

$$L_3^{(3)} \to L_3^{(2)} - (-7)L_2^{(2)}$$

Direct Methods for Solving Systems of Linear Equations

$$\mathbf{A}^{(3)} = \begin{bmatrix} 1 & 3 & 3 & \vdots & 0 \\ 0 & -4 & -4 & \vdots & 2 \\ 0 & 0 & 4 & \vdots & 15/2 \end{bmatrix}$$

Finding  $x_n$  by ascent resolution

$$4x_{3} = 15/2 \Rightarrow x_{3} = 15/8$$
$$-x_{2} - x_{3} = \frac{1}{2} \Rightarrow x_{2} = -19/8$$
$$x_{1} + 3x_{2} + 3x_{3} = 0 \Rightarrow x_{1} = 3/2$$
$$\binom{x_{1}}{x_{2}} = \binom{3/2}{-19/8}$$
$$15/8$$

#### 5.3.2 Cholesky method

Cholesky method can only be used if the matrix A is symmetric positive definite. (see paragraph 5.2.2)

Let us take the following system Ax = b.

If A is a positive definite symmetric matrix, then A can be decomposed into the form  $A = LL^t$ . Where, L is a lower triangular matrix.

$$Ax = b \rightarrow LL^{t}x = b \rightarrow L(L^{t}x) = b \dots$$

Since *L* and *L*<sup>t</sup> are triangular matrixes, we can transform the system into two systems that are easy to solve. We put,  $L^{t}x = Y$ , then we find the vector *Y* from the equation,

$$LY = b \dots$$

Then we find the vector x from the equation,

$$L^t x = Y \dots$$

Construction of the lower triangular matrix  $L = (l_{ij})$ . We have  $A = L L^t$  where  $A = (a_{ij})$ .

$$a_{ij} = \sum_{k=1}^{n} \ell_{ik} \ell_{jk} \qquad j \le i$$

Then :  $a_{11} = \ell_{11}^2 \Rightarrow \ell_{11} = \sqrt{a_{11}}$ , and  $a_{i1} = \ell_{i1}\ell_{11} \Rightarrow \ell_{i1} = \frac{a_{i1}}{\ell_{11}}$  i = 2, ... n

The construction of the matrix L is done column by column,

$$\ell_{\mathcal{R}\,\mathcal{R}} = \sqrt{a_{\mathcal{R}\,\mathcal{R}} - \sum_{j=1}^{\ell-1} \ell_{\mathcal{R}\,j}^2}$$

And:  $a_{i\,\hbar} = \sum_{j=1}^{\hbar} \ell_{i\,j} \ell_{\hbar\,j} = \ell_{i\,\hbar} \ell_{\hbar\,\hbar} + \sum_{j=1}^{\hbar-1} \ell_{i\,j} \ell_{\hbar\,j}$ 

Then:  $\ell_{i\,k} = a_{i\,k} - \sum_{j=1}^{k-1} \ell_{i\,j} \ \ell_{k\,j})/\ell_{k\,k}$ 

#### Example 3

Let us consider the system Ax = b, where  $A = \begin{bmatrix} 9 & 3 & 15 \\ 3 & 5 & 7 \\ 15 & 7 & 42 \end{bmatrix}$  and  $b = \begin{bmatrix} 3 \\ 5 \\ 15 \end{bmatrix}$ .

- Verifying that A is symmetric definite positive.
- A=A<sup>t</sup> is symmetric
- is A definite positive?

$$A = \begin{bmatrix} 9 & 3 & 15 \\ 3 & 5 & 7 \\ 15 & 7 & 42 \end{bmatrix}$$

 $I_1=9>0$ 

$$I_{2} = det \begin{vmatrix} 9 & 3 \\ 3 & 5 \end{vmatrix} = 45 - 9 = 36 > 0$$

$$I_{3} = det(A) = 9 \begin{vmatrix} 5 & 7 \\ 7 & 42 \end{vmatrix} - 3 \begin{vmatrix} 3 & 7 \\ 15 & 42 \end{vmatrix} + 15 \begin{vmatrix} 3 & 5 \\ 15 & 7 \end{vmatrix}$$

$$= 9(161) - 3(21) + 15(54)$$

$$= 1449 - 63 - 810 = 576 > 0$$

$$A = L L^{t} = \begin{bmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix} \begin{bmatrix} \ell_{11} & \ell_{21} & \ell_{31} \\ 0 & \ell_{22} & \ell_{32} \\ 0 & 0 & \ell_{33} \end{bmatrix}$$
$$= \begin{bmatrix} \ell_{11}^{2} & \ell_{11}\ell_{21} & \ell_{11}\ell_{31} \\ \ell_{21}\ell_{11} & \ell_{21}^{2} + \ell_{22}^{2} & \ell_{21}\ell_{31} + \ell_{22}\ell_{32} \\ \ell_{31}\ell_{11} & \ell_{31}\ell_{21} + \ell_{32}\ell_{22} & \ell_{31}^{2} + \ell_{32}^{2} + \ell_{33}^{2} \end{bmatrix} = \begin{bmatrix} 9 & 3 & 15 \\ 3 & 5 & 7 \\ 15 & 7 & 42 \end{bmatrix}$$

1<sup>st</sup> column

$$\begin{split} \ell_{11}^2 &= 9 \Rightarrow \ell_{11} = 3 \\ \ell_{21}\ell_{11} &= 3 \Rightarrow \ell_{21} = 1 \\ \ell_{31}\ell_{11} &= 15 \Rightarrow \ell_{31} = 5 \end{split}$$

#### 2<sup>nd</sup> column

$$\begin{split} \ell_{21}^2 + \ell_{22}^2 &= 5 \Rightarrow \ell_{22} = 2 \\ \ell_{31}\ell_{21} + \ell_{32}\ell_{22} &= 7 \Rightarrow \ell_{32} = 1 \end{split}$$

3<sup>rd</sup> column

$$\ell_{31}^{2} + \ell_{32}^{2} + \ell_{33}^{2} = 42 \quad \ell_{33} = 4$$
$$\Rightarrow L = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 5 & 1 & 4 \end{bmatrix} \rightarrow L^{t} = \begin{bmatrix} 3 & 1 & 5 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
$$LY = b \Leftrightarrow \begin{bmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 5 & 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 15 \end{bmatrix} \Rightarrow y = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{cases} LY = b \\ L^{t}x = y \end{cases} \qquad L^{t}x = y \leftrightarrow \begin{bmatrix} 3 & 1 & 5 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\frac{3}{4} \\ \frac{3}{4} \\ \frac{1}{2} \end{bmatrix}$$

#### 5.4 Factorization method LU (Crout and Doolittle).

This method consists of factoring matrix A into two triangular matrices; a lower triangular L (L comes from Lower) and the other upper triangular U (U comes from upper), provided that one of the two matrices has all diagonal elements equal to unity.

- If the elements of the diagonal of L are equal to unity  $(l_{ii} = 1)$ , the method is called a decomposition method <u>*LU*</u> of <u>*Doolittle*</u>,
- If the elements of the diagonal of U are equal to unity (u<sub>ii</sub> = 1), the method is called a decomposition method <u>LU</u> of <u>Crout</u>.

The system is given by,

$$AX = b.$$

A will be written in the form

A=LU,

so the system will be written as

$$LUX = b$$
$$L(UX) = b$$

We put

$$UX = Y$$
.

We solve the system in two steps:

1. Since U is upper triangular, we can easily find the vector Y using,

$$LY = b.$$

Thus, since L is lower triangular, we easily find the vector x using,

$$UX = Y$$

So, the system AX = b is decomposed into two triangular systems easy to solve.

$$Ax = b : \rightarrow LUx = b : \rightarrow L(Ux) = b : \rightarrow \begin{cases} Ux = y \dots 1 \\ Ly = b \dots 2 \end{cases}$$

The system with the upper triangular matrix is solved by direct (downward) substitution, and the one with the lower triangular matrix is solved by reverse (upward) substitution.

## 5.4.1 Determination of matrixes L and U

#### **Theorem 1**

A necessary and sufficient condition for A to be decomposable into a product LU is that all its fundamental minors are different from zero.

#### **Theorem 2**

If A is invertible and decomposable into a product LU, then this decomposition is unique.

#### **Factorization algorithm A = L.U (DOOLITTLE Version)**

To determine the elements  $l_{ij}(\forall i > j)$  of the matrix L and the elements  $u_{ij}(\forall j \le i)$  of the

matrix U, we use the following version of the factorization algorithm:

$$\begin{cases} l_{ii} = 1 \ \forall i \\\\ l_{ij} = \frac{\left[a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}\right]}{u_{jj}} \quad \forall i > j \\\\ u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \quad \forall i \le j \end{cases}$$

## Factorization algorithm A = L.U (Crout Version)

To determine the elements of matrix L and matrix U, we use the following version of the factorization algorithm:

$$\begin{cases} u_{ii} = 1 \forall i \\ l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \quad \forall i \leq j \\ u_{ij} = \frac{\left[a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}\right]}{l_{ii}} \quad \forall i < j \end{cases}$$

| $[l_{11}]$ |     | ן 0      | ]  | 1 | $u_{12}$ | ••• | $u_{1n}$ ] |
|------------|-----|----------|----|---|----------|-----|------------|
| L=         | •.  | :        | U= |   | :        | ۰.  | :          |
| $l_{n1}$   | ••• | $l_{nn}$ | L  |   | 0        | ••• | 1          |

\_\_\_\_\_

the elements of each matrix are given by:

$$l_{ki} = a_{ki} - \sum_{j=1}^{i-1} l_{kj} u_{ji}$$

Avec :
$$i=2,3,...,n$$
 et  $k=i,i+1,...,n$ 

$$u_{ik} = \frac{\left(a_{ik} - \sum_{j=1}^{i-1} l_{ij} \, u_{jk}\right)}{l_{ii}}$$

-----

## Exemple :

We take the system where; A = 
$$\begin{bmatrix} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{bmatrix}$$
 and  $b = \begin{bmatrix} 1 \\ 6 \\ 6 \end{bmatrix}$ 

Using the factorization of Crout to solve the system AX=b. Then,

$$L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \text{ and } U = \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix} \text{ such as A=LU}$$

- We identify the first column of A and the first column of LU, This allows to obtain the first column of L:

$$\begin{bmatrix} 2 & 0 & 0 \\ 4 & l_{22} & 0 \\ -2 & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{bmatrix}$$

We identify the first line of A with the first line of LU, this allows to obtain the first line of U:

$$\begin{bmatrix} 2 & 0 & 0 \\ 4 & l_{22} & 0 \\ -2 & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -1 \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{bmatrix}$$

– We identify the second column of A with the second column of LU, This allows us to obtain the second column of L:

$$\begin{bmatrix} 2 & 0 & 0 \\ 4 & 3 & 0 \\ -2 & 6 & l_{33} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -1 \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{bmatrix}$$

– We identify the second line of A with the second line of LU, This allows to obtain the second line of U :

$$\begin{bmatrix} 2 & 0 & 0 \\ 4 & 3 & 0 \\ -2 & 6 & l_{33} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -1 \\ 0 & 1 & 1/3 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{bmatrix}$$

- We identify the third column of A with the third column of LU, This allows us to obtain the third column of L:

$$\begin{bmatrix} 2 & 0 & 0 \\ 4 & 3 & 0 \\ -2 & 6 & -1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -1 \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{bmatrix}$$

Then we replace in,

 $\begin{cases} LY = b\\ UX = Y \end{cases} \text{ on obtient}$ 



Finely we get the vector x:

| $\begin{bmatrix} x_1 \end{bmatrix}$ |   | [2]                 |
|-------------------------------------|---|---------------------|
| $x_2$                               | = | 1                   |
| $\begin{bmatrix} x_3 \end{bmatrix}$ |   | $\lfloor 1 \rfloor$ |