MOMENTUM TRANSFER FLUID PROPERTIES

APPLICATIONS

Exercise 1

Given a volume of oil $V = 6m^3$ weighing G = 47KN. Calculate the volumetric mass, specific weight, and density of this oil knowing that $g = 9.81 \text{ m/s}^2$. Calculate the weight G and the mass M of a volume V = 3I of gearbox oil with a density equal to 0.9.

Exercise 2

Determine the volumetric weight of gasoline knowing that its density **d** = **0.7**. Given:

- the acceleration due to gravity g = 9.81 m/s²;
- the density of water ρ = 1000 kg/m³.

Exercise 3

Determine the dynamic viscosity of a motor oil with density d = 0.9 and kinematic viscosity v = 1.1 St.

Exercise 4

When compressing a liquid whose initial state parameters are: $p_1 = 50$ bar and $V_1 = 30.5$ dm³ and the final state parameters are: $p_2 = 250$ bar and $V_2 = 30$ dm³. Calculate the compressibility coefficient β of this liquid.